Автор работы: Пользователь скрыл имя, 15 Января 2012 в 21:36, курсовая работа
Кислородная теория горения пришла на смену теории флогистона. За два века, прошедших со времени открытия, теория Лавуазье не только не была опровергнута, но еще более укрепилась.
I.Введение
1.1 Открытие элемента кислорода…………………………….4
II. Возникновение кислорода……………………….………6
III. Нахождение кислорода в природе………………..……9
3.1 В составе простых веществ…………………………………9
3.2 В составе сложных веществ…………………...…………10
IV. Положение в таблице Д.И. Менделеева,
строение……………………………………………….…….11
V. Сравнение окислительно-восстановительных свойств и размера ядра кислорода с элементами стоящими с ним в той же подгруппе, группе и периоде………………..….11
VI. Получение кислорода
6.1 В лаборатории…………………………………………………12
6.2 В промышленности…………………………………………..12
VII Физические свойства……………………………….....14
VIII Химические свойства…………………………..…….15
IX. Кислород в металлургии …………………….………..18
X. Роль кислорода в органическом синтезе
10.1 Cупероксид анион-радикал…………………………………20
10.2 Супероксид калия………………………………………………….…..20
10.3 Реакция дегидрирования………………………………………..……21
10.4 Перекисный эффект Хараша……………………………………....21
10.5 Взаимодействие с алкилгалогенидами…………………………....23
10.6 Некоторые окислительно-восстановительные реакции……..23
10.7 Фермент супероксиддисмутаза…………………………….……..24
XI. Роль кислорода в природе…………………………….26
11.1 Продукты окисления………………………………………………..26
11.2 Кислород в воздухе………………………………………………….27
11.3 Кислород в почве……………………………………………………28
11.4 Кислород в воде……………………………………………………29
11.5 Озоновый слой…………………………………………….30
11.6 Химические свойства озона……………………………31
XII. Заключение………………………………………….35
XIII. Список литературы………………………………..3
.
Кислород самый распространенный элемент на нашей планете. Он входит в состав воды (88,9%), а ведь она покрывает 2/з поверхности земного шара, образуя его водную оболочку гидросферу. Кислород вторая по количеству и первая по значению для жизни составная часть воздушной оболочки Земли атмосферы, где на его долю приходится 21% (по объему) и 23,15% (по массе). Кислород входит в состав многочисленных минералов твердой оболочки земной коры литосферы: из каждых 100 атомов земной коры на долю кислорода приходится 58 атомов.
Как
вы уже знаете, обычный кислород
существует в форме О2. Это
газ без цвета, запаха и вкуса. В жидком
состоянии имеет светло-голубую окраску,
в твердом синюю. В воде газообразный кислород
растворим лучше, чем азот и водород.
3.1 В составе простых веществ.
Кислород взаимодействует почти со всеми простыми веществами, кроме галогенов, благородных газов, золота и платиновых металлов. Например, энергично реагирует с металлами: щелочными, образуя оксиды М2О и пер оксиды М2О2; с железом, образуя железную окалину Ге3О4; с алюминием, образуя оксид А12О3.
Реакции неметаллов с кислородом протекают очень часто с выделением большого количества тепла и сопровождаются воспламенением реакции горения. Вспомните горение серы с образованием SО2, фосфора с образованием Р2О5 или угля с образованием СО2.
Почти все реакции с участием кислорода экзотермические. Исключение составляет взаимодействие азота с кислородом: это эндотермическая реакция, которая протекает при температуре выше 1200 °С или при электрическом разряде:
N2 + O2
2NO –Q
3.2 В составе сложных веществ
Кислород энергично окисляет не только простые, но и сложные вещества, при этом образуется оксиды элементов, из которых они построены.
СН4 + 2О2 = 2Н2О + СО2
2Н2S + ЗО2 = 2SО2 + 2Н2О
Высокая
окислительная способность
Кислород
участвует и в процессах
Исключительно важна роль кислорода в процессе дыхания человека и животных.
Растения
также поглощают атмосферный
кислород. Но если в темноте идет
только процесс поглощения растениями
кислорода, то на свету протекает еще один
противоположный ему процесс — фотосинтез,
в результате которого растения поглощают
углекислый газ и выделяют кислород. Так
как процесс фотосинтеза идет более интенсивно,
то в итоге на свету растения выделяют
гораздо больше кислорода, чем поглощают
его при дыхании. Таким образом, содержание
свободного кислорода Земли сохраняется
благодаря жизнедеятельности зеленых
растений.
IV.
Положение в таблице
Д.И. Менделеева, строение.
В центре атома кислорода находится ядро с зарядом +8, ядро состоит из 8 протонов и (16-8)= 8 нейтронов вокруг ядра вращается 12 электронов.
О-О;
О О
Для
завершения внешнего энергетического
уровня кислороду не хватает двух
электронов. Энергично принимая их кислород
проявляет степень окисления, равную –2.
Однако в соединениях кислорода со фтором,
общая электронная пара смещена по фтору
как к более электроотрицательному элементу,
В этом случае степень окисления кислорода
равна + 2, а фтора + 2 . в пер оксиде водорода
H2O2 и его производных степеней
окисления равна – 1. В соединениях со
всеми другими электронами окислительность
кислорода отрицательна и равна – 2.
V.
Сравнение окислительно-восстановительных
свойств и размера ядра
кислорода с элементами
стоящими с ним в той
же подгруппе, группе
и периоде.
В своей группе у кислорода самая маленькая орбита. Принять электроны ему легче всех, отдать труднее. Самая маленькая орбита у него потому, что он стоит во 2 периоде и следовательно у него меньше всех электронных слоев. Принять недостающих электрон легче потому что, у него лучше связь атома с электроном, чем у остальных элементов этой группы. И отдать труднее потому что, тоже связь с электрона с ядром на последнем слое сильней, чем у остальных элементов этой группы.
У
кислорода ядро меньше чем у Li,
Be, B, C, N, но больше чем у F, потому что число
элекроных слоев у них одинаковы, а количество
электронов на последнем слое разное.
У кислорода электроны больше чем у Li,
Be, B, C, N значит связь электронов с ядром
больше и радиус меньше. У кислорода восстановительные
свойства больше, чем у Li, Be, B, C, N и принять
недостающий электрон ему легче, по меньше
чем у фтора, которому принять недостающий
электрон еще легче, чем кислороду.
VI.
Получение кислорода
6.1 В лаборатории
Кислород в лаборатории получают путем разложения пероксида водорода (H2O2) в присутствии катализатора- диоксида марганца (Mn O2) , а также разложением перманганата калия (KMn O4) при нагревание.
6.2
В промышленности
Так как горением в таком газе можно получить очень высокие температуры, полезные во многих... применениях, то быть может, что придет время, когда указанным путем станут на заводах и вообще для промышленности обогащать воздух кислородом.
Д.И. Менделеев
Попытки создать более или менее мощную кислородную промышленность предпринимались еще в прошлом веке в. многих странах. Но от идеи до технического воплощения часто лежит «дистанция; огромного размера»...
В Советском Союзе особенно быстрое развитие кислородной промышленности началось в годы Великой Отечественной войны, после изобретения академиком Л.П.Капицей турбодетандера и создания мощных воздухоразделительных установок.
Еще Карл Шееле получал кислород, по меньшей мере, пятью способами: из окиси ртути, сурика, селитры, азотной кислоты и пиролюзита. На подводных лодках и сейчас получают кислород, разлагая богатые этим элементом хлораты и перхлораты. В любой школьной лаборатории демонстрируют опыт – разложение воды на кислород и водород электролизом. Но ни один из этих способов не может удовлетворить потребности промышленности в кислороде.
Энергетически проще всего получить элемент №8 из воздуха, поскольку воздух – не соединение, и разделить воздух не так уж трудно. Температуры кипения азота и кислорода отличаются (при атмосферном давлении) на 12,8°C. Следовательно, жидкий воздух можно разделить на компоненты в ректификационных колоннах так же, как делят, например, нефть. Но чтобы превратить воздух в жидкость, его нужно охладить до минус 196°C. Можно сказать, что проблема получения кислорода – это проблема получения холода.
Чтобы получать холод с помощью обыкновенного воздуха, последний нужно сжать, а затем дать ему расшириться и при этом заставить его производить механическую работу. Тогда в соответствии с законами физики воздух обязан охлаждаться. Машины, в которых это происходит, называют детандерами.
До 1938г. для получения жидкого воздуха пользовались только поршневыми детандерами. По существу, такой детандер – это аналог паровой машины, только работает в нем не пар, а сжатый воздух. Чтобы получить жидкий воздух с помощью таких детандеров, нужны были давления порядка 200 атм., причем по неизбежным техническим причинам на разных стадиях процесса давление было не одинаковым: от 45 до 200 атм. КПД установки был немногим выше, чем у паровой машины. Установка получилась сложной, громоздкой, дорогой.
В конце 30-х годов советский физик академик П.Л. Капица предложил использовать в качестве детандера турбину. Идея – не новая, ее еще в конце прошлого века высказывал Дж. Рэлей, но к.п.д. «докапицынских» турбин для сжижения воздуха был невысок. Поэтому небольшие турбодетандеры лишь выполняли кое-какую подсобную работу при поршневых детандерах.
Капица создал новую конструкцию, которая, по словам изобретателя, была «как бы компромиссом между водяной и паровой турбиной». Главная особенность турбодетандера Капицы в том, что воздух в ней расширяется не только в сопловом аппарате, но и на лопатках рабочего колеса. При этом газ движется от периферии колеса к центру, работая против центробежных сил.
Такая конструкция турбины позволила поднять к.п.д. установки с 0,5 до 0,8. И, кроме того, турбодетандер «делает» холод с помощью воздуха, сжатого всего лишь до нескольких атмосфер. Очевидно, что 6 атм. получить намного проще и дешевле, чем 200. Немаловажно для экономики и то, что энергия, которую отдает расширяющийся воздух, не пропадает напрасно, она используется для вращения ротора генератора электрического тока.
Современные установки для разделения воздуха, в которых холод получают с помощью турбодетандеров, дают промышленности, прежде всего металлургии и химии, сотни тысяч кубометров газообразного кислорода. Они работают не только у нас, но и во всем мире.
Первый опытный образец турбодетандера был невелик. Его ротор восьми сантиметров в диаметре весил всего 250г. Но, как писал П.Л. Капица в 1939г., «экспериментальная эксплуатация этого турбодетандера показала, что он является надежным и очень простым механизмом. Технический к.п.д. получается 0,79...0,83». И этот турбодетандер стал «сердцем» первой установки для получения кислорода новым методом.
В 1942г. построили подобную, но уже намного более мощную установку, которая производила до 200кг жидкого кислорода в час. В конце 1944г. вводится в строй самая мощная в мире турбо кислородная установка, производящая в 6...7 раз больше жидкого кислорода, чем установка старого типа, и при этом занимающая в 3...4 раза меньшую площадь.
Современный
блок разделения воздуха БР-2, в конструкции
которого также использован
30
апреля 1945 г. Михаил Иванович Калинин
подписал Указ о присвоении
академику П. Л. Капице звания
Героя Социалистического Труда
«за успешную разработку
VII Физические свойства
При нормальных условиях кислород это газ без цвета, вкуса и запаха. 1л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100г при 0 °C, 2,09 мл/100г при 50 °C) и спирте (2,78 мл/100г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C). Является парамагнетиком. При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %. Жидкий кислород (темп. кипения −182,98 °C) это бледно-голубая жидкость. Твердый кислород (темп. плавления −218,79 °C) — синиекристаллы. Известны шесть кристаллических фаз, из которых три существуют при давлении в 1атм.: