Автор работы: Пользователь скрыл имя, 24 Марта 2011 в 13:34, курсовая работа
Радость от восприятия цвета – одно из старейших культурно-эстетических чувств человечества. Уже в древние времена люди заботились о том, чтобы окрасить одежду и предметы домашнего обихода в красивые цвета. При религиозно-культовых обрядах, напротив, использовали устраняющие отталкивающие расцветки. Во все времена окраска имела символическое значение, как это и сейчас выражается в цветах гербов и национальных флагов.
1. Введение 3
1.1. Краткая историческая справка 3
1.2. Современные проблемы производства и применения красителей 6
2. Современная классификация синтетических красителей и их свойства 8
2.1. Тип классификации 8
2.1.1. Химическая классификация красителей 8
2.1.2. Техническая классификация красителей 12
2.2. Свойства и строение синтетических красителей 16
2.2.1. Номенклатура красителей 16
2.2.2. Связь между строением и цветом вещества 17
2.2.3. Светопрочность красителей 19
2.3. Общие реакции получения красителей 21
2.4. Применение синтетических красителей 21
3. Реакции азосочетания. Азокрасители 23
3.1. Азокрасители. 23
3.2. Реакция диазотирования 24
3.3. Реакция азосочетания 29
3.4. Механизм реакции азосочетания 34
4. Список литературы 36
Простейшее
азосоединение – азобензол
и аминобензол
Практическое значение имеют азокрасители более сложного строения.
Азокрасители получают из ароматических аминов и оксисоединений при помощи сравнительно простых реакций диазотирования и азосочетания которые будут рассмотрены подробно. При этом используют большое количество амино- и оксисоединений бензольного и нафталинового ряда с различными заместителями, простыми и сложными. Это даёт возможность получать красители всех цветов и оттенков – от лимонно-жёлтого до глубоко-чёрного. По технической классификации среди азокрасителей имеются прямые, кислотные, протравные, основные, красители для ацетатного шёлка, компоненты красителей, образующихся на волокне, пигменты и др. Азокрасители широко применяются для крашения растительных, животных и синтетических волокон, резины, кожи, пластических масс, в лакокрасочной, полиграфической и других областях промышленности.
В
основе технологии получения азокрасителей
лежат две химические реакции: 1)
диазотирование ароматического амина,
2) сочетание полученного
Диазотированием называют взаимодействие первичного ароматического амина с азотистой кислотой в присутствии избытка минеральной кислоты. Как правило, минеральная кислота берётся в некотором избытке (2,5 эквивалента на 1 эквивалент амина). При этом образуется диазосоединение.
Азотистая кислота неустойчива и легко разлагается, поэтому при диазотировании применяют не свободную азотистую кислоту, а её соль – нитрит натрия. Эта соль при действии на неё минеральной кислоты (обычно соляной, реже – серной) образует азотистую кислоту, которая вступает в реакцию с амином. Поэтому часть минеральной кислоты, взятой для реакции, расходуется на разложение нитрита натрия с образованием азотистой кислоты:
NaNO2 + HCl → HNO2 + NaCl.
Схему реакции диазотирования, в присутствии соляной кислоты, можно представить в общем виде:
Диазосоединения в этой форме называются соли диазония. Само диазосоединение является катионом [ArN2]+, а остаток кислоты – анионом. Например, при диазотировании анилина получают хлористый фенилдиазоний (I), при диазотировании n-нитроанилина – хлористый n-нитрофенилдиазоний (II) и.т.д.; при диазотировании в присутствии серной кислоты образуются соответствующие сернокислые соли (III, IV):
Большинство
ароматических диазосоединений
весьма неустойчиво. В твёрдом состоянии
они разлагаются при
Диазотирование ведут, как было указано, в кислой среде, чаще всего в среде соляной кислоты. В серной кислоте диазотирование идёт медленнее, чем в соляной. Так как солянокислые соли большинства ароматических аминов лучше растворяются в воде, чем сернокислые и, кроме того, отличается каталитическое действие ионов галогена. Добавка бромистого натрия (или другого бромида) значительно ускоряет реакцию.
Диазотирование
обычно ведут в присутствии
[ArN2]+Cl- + ArNH2 → Ar─N══N─HN─Ar.
В сильнокислой среде эта реакция практически не идёт. Кроме того, в присутствии большого избытка минеральной кислоты повышается стойкость раствора диазосоединения.
Если
ароматический амин нерастворим
в водном растворе кислоты (как, например,
сульфаниловая кислота или n-
В зависимости от свойств исходного ароматического амина и получаемого диазосоединения диазотирование ведут по-разному.
Анилин
и толуидин смешивают с водой,
добавляют рассчитанное количество
соляной кислоты и
Диамины, т.е. соединения с двумя аминогруппами, по-разному ведут себя в реакции диазотирования. м-Диамины, например м-фенилдиамин, легко диазотируются с образованием бисдиазосоединения:
Образовавшееся бисдиазосоединение легко вступает в реакцию сочетания с исходным м-фенилдиамином; при этом образуется краситель. Диазотирование n-диаминов осложняется их склонностью к окислению, которое особенно легко протекает в среде концентрированной серной кислоты. Поэтому красители на основе бисдиазотированного n-фенилдиамина (т.е. дисазокрасители) получают не из n-фенилдиамина, а из n-нитроанилина или N-ацетил-n-фенилдиамина. n-Нитроанилин диазотируют, получают краситель на основе этого диазосоединения (моноазокраситель), а затем в полученном красителе восстанавливают нитрогруппу в аминогруппу, диазотируют её и переводят в дисазокраситель.
Бензидин и другие амины, в которых аминогруппы расположены в разных ароматических ядрах, диазотируются обычными приёмами в обеих аминогруппах:
При диазотировании контролируют температуру, кислотность среды и наличие в реакционной массе азотистой кислоты.
Кислотность контролируют при помощи индикаторной бумаги конго, которая в присутствии соляной или серной кислоты изменяет свой красный цвет на синий. Присутствие значительного избытка кислоты – важнейшее условие проведения реакции диазотирования. При недостатке кислоты снижается условие проведения реакции диазотирования. При недостатке кислоты снижается устойчивость диазосоединения и возникают побочные реакции, приводящие к загрязнению диазосоединения.
Наличие
азотистой кислоты определяют при
помощи индикаторной йодкрахмальной бумаги.
Она представляет собой фильтровальную
бумагу, пропитанную раствором
Азосочетанием называется взаимодействие диазосоединений с ароматическими аминами и фенолами (нафтолами); оно приводит к образованию азокрасителей.
В реакции азосочетания участвуют два реагента: диазосоединение (обычно в форме соли диазония) и ароматический амин или фенол (нафтол). Амин, из которого получено диазосоединение, называют диазосотавляющей реакции азосочетания, а второй реагент – азосоставляющей (не путать с азосоединением!). Например, при получении красителя хризоидина сочетанием диазотированного анилина с м-фенилдиамином:
диазосоставляющей является анилин, а азосоставляющей – м-фенилдиамин.
В качестве азосоставляющей используют ароматические соединения, содержащие гидроксильную группу OH, аминогруппу NH2, а также замещённую аминогруппу NHAlk, N(Alk)2, NHAr.. Активной формой диазосоставляющей является катион диазония [ArN2]+.
Реакцию азосочетания можно рассматривать как реакцию замещения водорода в молекуле азосоставляющей остатком диазосоединения, точнее – замещённой азогруппой ArN═N─. При азосочетании замещение идёт, как правило, в п-положение к амино- или оксигруппе азосоставляющей. Если п-положение занято, то замещение идёт в о-положение.
Сочетание с аминосоединениями ведут обычно в слабокислой среде, с оксисоединениями – в слабощелочной среде. Чтобы поддерживать во время реакции сочетания необходимую кислотность или щелочность среды, к раствору азосоставляющей добавляют уксуснокислый натрий для создания слабокислой среды, кальцинированную соду или бикарбонат натрия для создания слабощелочной среды. Уксуснокислый натрий взаимодействует с минеральной кислотой, выделяющейся при реакции азосочетания, и связывает её, превращаясь при этом в уксусную кислоту:
HCl+CH3COONa→CH3COOH+NaCl.
Благодаря этому в реакционной массе поддерживается слабокислая реакция.
При сочетании диазосоединений с анилином и другими первичными аминами бензольного ряда образуется промежуточное диазоаминосоединение:
При нагревании в кислой среде до 35-38˚С оно превращается в азосоединение:
Некоторые амины бензольного ряда, например крезидин, сразу образуют азосоединения. Аминосоединения, имеющие в м-положении к аминогруппе заместитель первого рода, например м-толуидин или м-фенилдиамин, являются активными азосоставляющими, легко вступающими в реакцию сочетания. В молекулу м-фенилендиамина (I) могут вступить две азогруппы: первая вступает в положение 4, вторая – в положение 2 или 6; при этом образуется смесь двух диазокрасителей. В м-толуилендиамине (II) первая азогруппа вступает в положение 5, вторая - в положение 3:
1–Нафтиламин в кислой среде сочетается преимущественно в положении 4:
Таким
же образом сочетаются сульфокислоты
1-нафтиламина, например, 1-нафтиламин-6-сульфокислота,
1-нафтиламин-7-сульфокислота, перекислота
(1-нафтиламин-8-сульфокислота)
Если положение 4 занято, что сочетание идёт в положение 2:
Легко вступает в реакцию сочетания алкилированные амины, например, диметил- и диэтиланилин:
При сочетании диазосоединений с оксисоединениями нужна слабощелочная среда и температура от 0 до 10˚С. С фенолом сочетание идёт в параположение: