Углеводы

Автор работы: Пользователь скрыл имя, 08 Декабря 2011 в 18:38, курсовая работа

Краткое описание

По химической классификации, все углеводы являются полигидроксикарбонильными соединениями. Номенклатура их, как и в большинстве случаев природной химии, носит тривиальный характер, систематический подход разработан и им удобно пользоваться при названии производных углеводов и обозначении характерных структурных элементов. Общее окончание для всех углеводов, исключая полимерные системы - оза.
Здесь следует отметить, что обычно углеводы подразделяют в первую очередь на моносахариды, олигосахариды и полисахариды. Но так как моносахара являются фундаментальными углеводными единицами, а олигосахара и полисахара - это не что иное, как их производные, то мы и будем придерживаться этой схемы: не выделять олигосахара в отдельный класс, рассматривая их как соответствующие производные моносахаров.

Содержание работы

Введение
Глава 1 Углеводы, их классификация и значение.
1.1. Содержание углеводов в клетке и их классификация.
1.2. Состав и строение моносахаридов на примере глюкозы.
1.3. Физические и химические свойства глюкозы.
1.4. Применение углеводов.
Глава 2. Физиологическое значение углеводов
2.1. Углеводы и углеводный обмен.
2.2. Значение жиров, углеводов и минеральных веществ в питании человека.
2.3. Нормы этих компонентов пищи и источники их поступления в организм человека
Глава 3. Углеводы: от простых до сложных, где содержатся углеводы в продуктах питания
3.1. Простые углеводы
3.2. Сложные углеводы
3.3. Обмен углеводов
Глава 4. Химические свойства углеводов.
4.1. Реакции углеводов
4.2. Образование простых эфиров
Глава 5. Роль углеводов в медицине, ветеринарии, питании человека.
5.1. Применение углеводов.
5.2. Применение углеводов в парентеральном питании
5.3. Использование углеводов при диетическом питании
Заключение
Список использованной литературы.
Приложения.

Содержимое работы - 1 файл

план курсовой работы.doc

— 947.00 Кб (Скачать файл)

       Содержание  сахара в них минимально, а питательная  ценность при этом высокая. Так, в 100 граммах фруктов (яблоки, апельсины, бананы, груши и т.д.) содержится всего лишь 0,6 столовых ложек сахара, как и 100 граммах ягод (малина, крыжовник, смородина). Съеденные 100 грамм бобовых (фасоль, горох, бобы) вместе с растительным белком дадут лишь 1 столовую ложку сахара, а овощи – вообще 0,2 столовых ложки сахара.

       Вывод напрашивается сам собой: отдавая предпочтение в своей пище простым углеводам, мы невольно снабжаем свой организм сахаром, тогда как продукты, содержащие сложные углеводы, обеспечивают наш организм питательными веществами при минимальном насыщении сахаром.

       Все полисахариды, представленные в пище человека, за редкими исключениями, являются полимерами глюкозы.

       Крахмал – основной из перевариваемых полисахаридов. На его долю приходится до 80% потребляемых с пищей углеводов.

       Источником  крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель. Больше всего крахмала содержат крупы: от 60% в гречневой крупе (ядрице) до 70% - в рисовой. Из злаков меньше всего крахмала содержится в овсяной крупе и продуктах ее переработки: толокне, овсяных хлопьях «Геркулес» - 49%. Макаронные изделия содержат от 62 до 68% крахмала, хлеб из ржаной муки в зависимости от сорта – от 33% до 49%, пшеничный хлеб и другие изделия из пшеничной муки – от 35 до 51% крахмала, мука – от 56 (ржаная) до 68% (пшеничная высшего сорта). Крахмала много и в бобовых продуктах – от 40% в чечевице до 44% в горохе. По этой причине сухие горох, фасоль, чечевицу, нут относят к зернобобовым. Особняком стоят соя, которая содержит только 3,5% крахмала, и соевая мука (10-15,5%). По причине высокого содержания крахмала в картофеле (15-18%) в диетологии его относят не к овощам, где основные углеводы представлены моносахариды и дисахаридами, а к крахмалистым продуктам наравне со злаковыми и зернобобовыми.

       В топинамбуре и некоторых других растениях углеводы запасаются в виде полимера фруктозы - инулина. Пищевые продукты с добавкой инулина рекомендуют при диабете и особенно – для его профилактики (напомним, что фруктоза дает меньшую нагрузку на поджелудочную железу, чем другие сахара).

       Гликоген - «животный крахмал» - состоит из сильно разветвленных цепочек молекул глюкозы. Он в небольших количествах содержится в животных продуктах (в печени 2-10%, в мышечной ткани – 0,3-1%).

       Химические  свойства моносахаридов, как и других бифункциональных соединений, могут  быть разделены на три группы: это  свойства спиртов, карбонильных соединений, и специфические реакции, обязанные взаимному влиянию и взаимному участию спиртовых и карбонильных функций.

       Из  типичных спиртовых свойств моносахаридов  следует отметить, в первую очередь, реакции этерификации различного типа, ведущие к образованию сложных эфиров карбоновых кислот, сложных эфиров минеральных кислот, простых алкиловых эфиров. Так как в молекуле любого моносахарида содержится несколько спиртовых групп, то очевидно, что в любом случае эти реакции могут иметь различную степень кратности, т.е. могут быть получены, в зависимости от активности реагента, моноэфиры, дизфиры, триэфиры и т.д. При этом не полностью этерифицированные моносахара будут представлены еще и набором региоизомеров. Таким образом, в одной только реакции ожидаемое многообразие получаемых эфиров более чем достаточно.

       Реакции карбонильных групп моносахаридов  всегда могут проявиться, так как  в растворе моносахарида всегда имеется  ациклический таутомер, всегда имеется  хоть в каких-то количествах и  тогда, независимо от количества этой формы, процесс таутомерии обеспечивает полное прохождение реакции по карбонильной группе, т.е. так, как будто все вещество в растворе имело нециклическую структуру. В первую очередь, здесь следует отметить различные реакции нуклеофильного присоединения, окислительно-восстановительные реакции, реакции азометиновой конденсации.

       Реакции окисления наиболее любопытны тем, что могут быть реализованы по трем направлениям.

 

 

       Наиболее  мягкое окисление по альдегидной  группе приводит к гликоновым кислотам, окисление немного более энергичное - переводит спиртовую группу в карбоксильную. Концевая спиртовая группа может быть окислена до карбоксильной при условии защиты последней, т.е. в условиях жесткой стабилизации циклической формы молекулы. При действии некоторых окислителей, циклическая форма альдогексоз окисляется непосредственно по полуацетальному гидроксилу с образованием д-лактонов, которые обычно перегруппировываются в более стабильные г-лактоны.

       Специфические свойства моносахаридов. Наличие в молекуле углеводов спиртовых гидроксилов открывает возможность одновременного участия в реакции нескольких из них. Типичная реакция моносахаридов с карбонильными реагентами приводит к образованию циклических ацеталей, структура которых определяется взаимным пространственным расположением гидроксильных групп: обычно в таких реакциях участвует пара цис расположенных гидроксифункций. 

 

       Так как моносахара в растворе обычно представлены смесью нескольких таутомеров, то при взаимодействии их с карбонильным соединением возможно образование циклических производных нетипичных форм, присутствующих в незначительных количествах, но, по ряду факторов, благоприятных для реакций такого типа.

       Сближение в пространстве двух гидроксильных групп моносахаридов может, в условиях, соответствующих образованию простых эфиров, реализоваться в такой реакции внутримолекулярно. Продукты реакций имеют бициклическую структуру и называются ангидросахарами. Подобная реакция эффективно проходит в молекуле йодозы, так как в ее пиранозной форме один из информационных переходов сближает гидроксилы при С и С6, тогда как все остальные приобретают энергетически выгодное экваториальное положение. 

 

       Ангидросахара, полученные взаимодействием реакционных  центров при С1 и С4, имеют структуру, в которой зафиксирована форма лодки шестичленного цикла пиранозы. 

 

       Специфической реакцией моносахаридов можно считать  и окисление их реагентами, действующими на пару вицинальных гидроксильных  групп, предпочтительно имеющих цис-конфигурацию. Окисление выполняется йодной кислотой или тетраацетатом свинца и протекает через промежуточный циклический диэфир с последующим расщеплением углерод-углеродной связи циклического фрагмента. В свое время, реакция сыграла решающее значение при исследовании строения моносахаров.

 

       Но  так как обычно углеводная молекула имеет более, чем два гидроксила, то вариантов деструктивного гликольного окисления несколько, и процесс протекает часто постадийно и достаточно глубоко: например, так, как эрj имеет место в случае D-глюкозы. 

 

       Под действием оснований и кислот моносахара претерпевают изомеризацию и деградацию в зависимости от условий.

       В мягких щелочных условиях обычно имеет  место эпимеризация, т.е. изменение конфигурации углеродного атома в 2-положении к карбонильной группе, а также изомеризация типа альдоза р. кетоза. Так, при выдерживании D-глюкозы в течении нескольких дней в 0,01 М растворе гидроокиси натрия образуется смесь, содержащая 28% D-фруктозы, 3% D-маннозы и исходную D-глюкозу. Оба изомеризационных процесса протекают через общий интермедиат, являющийся енольной формой D-глюкозы, т.е. указанная смесь веществ является следствием кетоенольной таутомерии, катализируемой основанием. Заметим, что реакция идет из ациклической формы, являющейся также компонентой таутомерного процесса.

 

 

       В более жестких щелочных условиях проходят более глубокие перегруппировки  до сахариновых кислот. Та же самая  D-глюкоза при обработке 0,15 М раствором гидроокиси кальция превращается в смесь нескольких гидрокси-кислот. Эти реакции многоступенчатые и, как правило, малой степени стерео-специфичности.

       В кислой среде моносахара обычно более  стабильны, но при нагревании в растворах  минеральных кислот протекают процессы дегидратации, результатом которых  являются производные фурана. Так, альдопентозы, отщепляя три молекулы воды, образуют фурфурол, а альдогексозы - 5-гидроксиме-тилфурфурол.

 

 

       Характерным свойством моносахаров, обязанным совместному присутствию карбонильной и гидроксильной функций, является реакция образования озазонов, образующихся при взаимодействии как альдоз, так и кетоз с фенилгидразином. Обычная азометиновая конденсация по карбонильной группе моносахарида с одной молекулой фенилгидразина приводит к соответствующему фенилгидразону, но характерно то, что процесс на этом не заканчивается, а наблюдается последующая реакция окисления соседней гидроксильной группы до карбонильной, на что расходуется еще одна молекула фенилгидразина, далее новая карбонильная группа конденсируется с третьей молекулой фенилгидразина. 

 

        Образующиеся в результате бисфенилгидразоны хорошо кристаллизуются и потому часто используются для идентификации моносахаридов. На заре углеводной химии эта реакция использовалась для установления строения отдельных моносахаридов и их взаимосвязи. К примеру,

       D-глюкоза и D-манноза образуют один и тот же озазон.

       Рассматривая  химические свойства углеводов, невозможно обойти их реакции брожения; фактически являясь биохимическими реакциями, они широко используются в химической технологии и в лабораторной практике. Большинство углеводов под действием ферментов, внутриклеточно, образуют пировиноградную кислоту и АТР. 

 

       Далее, в зависимости от природы микроорганизма, поставляющего определенный набор  ферментов, пировиноградная кислота  превращается в тот конечный продукт, который соответствует каталитическим возможностям данного комплекта энзимов. По продуктам брожения различают следующие его основные виды: спиртовое, молочнокислое, пропионовокислое, маслянокислое. Иногда основной процесс брожения может осложняться некоторыми параллельными или последовательными реакциями, обусловленными вариациями условий среды или ферментного набора: так, при маслянокислом брожении может реализоваться так называемое ацетон-бутиловое брожение; спиртовое брожение сопровождается уксуснокислым, виннокислым и глицериновым брожениями; при некоторых видах брожения в значительных количествах могут накапливаться лимонная, фумаровая и янтарная кислоты. 

3.3. Обмен углеводов

       Углеводы - класс органических соединений, имеющих  характер сахаров или близких к сахарам по строению и химическим свойствам. Наряду с белками и жирами углеводы играют важнейшую роль в обмене веществ и энергии в организме человека и животных. Они входят в состав растительных, животных и бактериальных организмов составляют абсолютное большинство органических природных соединений. Углеводы играют важную роль как основной строительный материал растений, скелета насекомых и других организмов. Есть данные, что углеводы поверхности клеток играют важную роль в возникновении злокачественных опухолей и в процессах взаимодействия вирусов с клеткой. В организме человека и животных некоторые сложные углеводы, например гиалуроновая кислота, выполняют специфическую функцию смазочных веществ и служат жидкой средой, в которой происходит движение клеток, и смазываются трущиеся поверхности, например суставные поверхности.

       Класс углеводы делится на следующие группы - моносахариды, или простые сахара виноградных сахар-глюкоза, плодовый сахар-фруктоза. Наиболее распространенным в природе моносахаридом является глюкоза, называемая также виноградным сахаром. Она содержится в свободном виде в сладких фруктах, является обязательным компонентом крови человека и других млекопитающих, входит в качестве основного звена в состав многих природных полисахаридов. Из других распространенных в природе моносахаридов - гексоз т.е. углеводов, содержащих в молекуле, как и в случае глюкозы,6 углеродных атомов следует отметить маннозу и галактозу. Манноза может встречаться в свободном виде, но чаще вместе с другими моносахаридами образует длинные полисахаридные цепи .Галактоза не встречается в свободном виде. Она входит вместе с глюкозой в состав лактозы, а также является компонентом многих полисахаридов и гликопротеидов. Нарушение обмена галактозы, утрата организмом способности перерабатывать ее приводят к тяжелому наследственному заболеванию - галактоземии. Моносахариды и их производные выполняют 3 основные функции. Первую-это энергетическую функцию окислительное расщепление этих соединений дает организму 55-60 необходимой ему энергии. Во-вторых, промежуточные продукты распада моносахаридов и их производных используются в клетках для синтеза других необходимых клетке веществ, в том числе соединений других классов так, из промежуточных продуктов метаболизма глюкозы в клетках могут синтезироваться липиды и заменимые аминокислоты, правда, в последнем случае необходим дополнительный источник атомов азота аминогрупп. И последнее - моносахариды и их производные осуществляют структурную функцию, являясь мономерными единицами других, более сложных молекул, таких как полисахариды или нуклеотиды олигосахариды, содержащие от 2 до 10 моносахаридных остатков, соединенных между собой особой гликозидной связью сахароза, мальтоза, лактоза и др. .Мальтоза-дисахарид, состоящий из двух остатков глюкозы, образуется при частичном гидролитическом

Информация о работе Углеводы