Автоматизированное проектирование деталей крыла

Автор работы: Пользователь скрыл имя, 11 Ноября 2012 в 11:00, реферат

Краткое описание

На всех этапах создания новых изделий – от проектирования до изготовления, приходится решать разнообразные геометрические задачи. В одних областях эти задачи играют подчиненную роль, в других – функциональные качества изделия решающим образом зависят от внешних форм отдельных узлов и взаимной их компоновки. Особенно важны задачи формообразования в проектировании аэро- и гидродинамических обводов агрегатов летательных аппаратов, рабочих колес, направляющих и отводящих каналов турбин. Здесь ни одна из существенных физических и технологических задач не может быть решена в отрыве разработки формы.
От формы изделия зависит его эстетическое восприятие, которое может меняться под воздействием различных факторов. Прагматическая и эстетическая компоненты входят в геометрию различных изделий в неодинаковых пропорциях. Иногда они достигают полного единства, например, в совершенных обводах современного воздушного лайнера или сверхзвукового истребителя, а иногда отдельные детали конструкций могут не обладать эстетическим воздействием, но выполнять важные функции.

Содержание работы

ВВЕДЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Развитие автоматизации технологической подготовки производства и ее современное состояние . . . . . . . . . . . . . . . . . . . 7
Обзор САПР и их краткое описание . . . . . . . . . . . . . . . . . . . . . . . . .9

КОНСТРУКТОРСКИЙ РАЗДЕЛ
Описание конструкции крыла . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Плазово-шаблонный метод производства . . . . . . . . . . . . . . . . . . . 16
Автоматизированное проектирование деталей крыла . . . . . . . .20
Анализ конструкции крыла и используемых материалов, необходимый для производства шаблонов и оснастки . . . . . .21
Проектирование деталей . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Трехмерная увязка конструкции . . . . . . . . . . . . . . . . . . . . . . . .32

ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ
Изготовление шаблонов и оснастки . . . . . . . . . . . . . . . . . . . . . . . . 33
Изготовление шаблонов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Производство оснастки . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Изготовление деталей крыла . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Изготовление деталей из композиционных материалов . . . . .57
Изготовление механообрабатываемых деталей . . . . . . . . . . . .60
Изготовление листовых деталей . . . . . . . . . . . . . . . . . . . . . . . .61
РАСЧЕТНЫЙ РАЗДЕЛ

Составление математической модели теоретических обводов крыла . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Классификация несущих поверхностей . . . . . . . . . . . . . . . . . .64
Основные геометрические характеристики крыла . . . . . . . . . 65
Геометрические характеристики аэродинамического профиля . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Проектирование поверхности линейчатого крыла . . . . . . . . . 76

РАЗДЕЛ ОХРАНЫ ТРУДА
Техника безопасности на участке механообработки . . . . . . . . . . 80
Требования безопасности, предъявляемые к оборудованию .82
Опасные зоны оборудования и средства их защиты . . . . . . . .84
Охрана труда в автоматизированных производствах . . . . . . .87
Защита от поражения током электрооборудования . . . . . . . . . . 89
Охрана труда в автоматизированных производствах . . . . . . .89
Защитное заземление . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Зануление . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

ЗАКЛЮЧЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ЛИТЕРАТУРА. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

Содержимое работы - 7 файлов

ВВЕДЕНИЕ.doc

— 101.00 Кб (Открыть файл, Скачать файл)

КиТ.doc

— 4.89 Мб (Скачать файл)


Автоклавы – это герметичные  сосуды большого объёма, в которых можно создать давление до 30МПа. Преимущество автоклавного формования в том, что в автоклавах из-за значительного объёма нагревательной камеры обеспечиваются заданные равномерные температура и давление независимо от формы изделия, а также возможность механизации при загрузке и выгрузке. В автоклав входят системы создания и регулирования рабочего давления, управления процессами разогрева и охлаждения, а также система записи параметров.

      1. Изготовление сотового заполнителя

Появление слоистых конструкций вызвали требования к высокой удельной прочности при минимально возможном весе конструкции. Слоистые конструкции представляют собой листовые обшивки, между которыми установлен заполнитель, обеспечивающий совместную работу обшивок и необходимую жёсткость конструкции. В качестве заполнителя в слоистых конструкциях применяются заполнители в виде гофров и вафель из пенопластов и пеноалюминия, а также наиболее распространенный – сотовый заполнитель.

В конструкциях сотовых  заполнителей распространение получила шестигранная форма ячейки, как более технологичная и имеющая большую площадь склеивания с обшивками. Параметрами сотового заполнителя являются размер ячейки и толщина материала (рис. 7.1).

Наиболее распространённым способом изготовления сотового заполнителя является метод растяжения пакетов, так как этот метод    позволяет механизировать выполнение всех операций. Рассмотрим этот процесс.

Первым этапом в изготовлении сотового заполнителя является процесс нанесения клеевых полос на полосы материала, их подсушивание и сборка в пакеты. Этот процесс осуществляется на специальных станках, позволяющих автоматизировать и соединить нанесение клея, его сушку и сборку в пакеты в один процесс.

Затем полученные пакеты склеиваются – помещаются в специальное приспособление, напоминающее штамп. «Пуансон» и «матрица» такого штампа выполнены в виде гребенок, создающих давление только на клеевых полосах. Это приспособление помещается в пресс для создания давления.

Полученные пакеты растягиваются  на специальных установках.

Затем пакеты пропитывают  связующим (смолой) - установленными на специальные рамы пакеты погружают в ванну со связующим. Пропитанные пакеты подвергают термообработке.


Завершающим этапом изготовления сотовых заполнителей является процесс придания им требуемых геометрических форм.

      1. Сборка трехслойных панелей с сотовым заполнителем

Сборка панелей осуществляется на болванке, на которую укладываются окантовки – препрег – для заделки кромок, затем укладывается нижняя обшивка, затем – сотовый заполнитель и, наконец, - верхняя обшивка. После этого на верхнюю обшивку укладывается антиадгезионная пленка, и всё закрывается эластичной оболочкой. Процесс формования проводится в термошкафу или автоклаве.


Перед укладкой последней обшивки  соты в местах крепления панели с  элементами каркаса (т.е. где будут  сверлиться отверстия под болты, например) заполняются специальным заполнителем согласно сборочному чертежу.

    1. Изготовление механообрабатываемых деталей

После увязки конструкции  в системах геометрического моделирования для механообрабатываемых деталей без каких-либо дополнительных построений в этих же системах могут быть созданы управляющие программы для оборудования с ЧПУ.

Системы «Cimatron it» и «Unigraphics», как уже было отмечено, снабжены пакетами для 2, 3 и 5-координатой фрезерной, и 2 и 4-координатной токарной обработки. Пакеты и той и другой систем имеют встроенные средства для визуального контроля управляющих программ.

Рассмотрим обобщенный процесс создания управляющей программы в системе «Unigraphics»:

    1. рабочая координатная система устанавливается таким образом, чтобы соответствовать системе координат станка.
    2. запускается модуль MANUFACTURING.
    3. совмещаются рабочая и станочная координатные системы.
    4. выбирается тип траектории обработки («от точке к точке», фрезерование в плоскости и т.д.).
    5. создается инструмент, где указывается его тип и геометрические параметры.
    6. задаются режимы обработки (подачи, вращения шпинделя и т.п.).
    7. указывается на модели обрабатываемая геометрия - поверхности детали. При необходимости указываются поверхности, которые не должны быть зарезаны.


    1. задаются способы подвода, врезания, отвода, исходная точка и другие параметры, относящиеся к холостому движению инструмента;
    2. производиться генерация траектории.

Полученную траекторию впоследствии можно отредактировать  – изменить подачи, инструмент и т.д.

    1. Изготовление листовых деталей

Все листовые детали конструкции  крыла подвергаются формовке резиной. На рис 7.2. показана обща схема штамповки резиной. Плоскую заготовку 2 помещают на пуансон (формблок) 1, находящийся на нижней плите 5; матрицей служит контейнер 4, внутренняя полость которого заполнена резиной 3. При движении вниз плунжера пресса и закреплённого на нём контейнера внутренняя полость контейнера замыкается нижней плитой 5 и в его полости начинает увеличиваться давление q резины; под воздействием давления q заготовка прижимается к пуансону и начинает деформироваться. В конечной стадии процесса штамповки давление достигает максимального значения, заготовка полностью обжимается по пуансону и принимает его форму.


Как видно из схемы, операция штамповки  очень проста; специальной оснасткой является только формблок, а контейнер и нижняя плита (выполненная по его внутренним размерам) являются универсальными.

При штамповке резиной заготовка  испытывает распределённое давление только со стороны резиновой подушки, края заготовки деформируются свободно. Поэтому если в зоне деформирования возникают напряжения сжатия, то заготовка легко теряет устойчивость, появляются складки, которые не всегда можно устранить обжатием на пуансоне  в конце операции. В этом случае складки устраняют последующей ручной доработкой. При возникновении в зоне деформирования напряжений растяжения складки не образуются и степень деформации ограничивается удельным давлением q, создаваемой резиновой подушкой контейнера.

При помощи штамповки резиной изготавливаются  детали, главным образом, из алюминиевых сплавов: нервюры, шпангоуты и их детали, диафрагмы, стенки, перегородки и др. Эти детали проектируются с учётом технологических возможностей именно штамповки резиной, так как изготовление их другими способами, например в металлических штампах, значительно дороже.


Штамповка резиной производится в гидропрессах. Применяются гидропрессы двух типов: с максимальным усилием 2500 и 5000Т. Размеры рабочей зоны контейнеров соответственно равны 1×2 и 3,5×1,3м. Удельное давление q в контейнере 80-100кГ/см2. Рабочая площадь контейнеров позволяет осуществлять групповую штамповку; для этого на нижнюю плиту одновременно устанавливают несколько формблоков с заготовками и за один рабочий ход плунжера на каждом из них штампуются отдельные детали.

Комплект деталей, изготовляемых  при помощи штамповки резиной, включает несколько тысяч наименований, а трудоёмкость, приходящаяся на этот вид работ, достигает 15% от общей трудоёмкости заготовительно-штамповочных работ.

1 Прикладные функции (или user-функции) – разработка группы программистов, занимающихся расширением возможностей графических систем. Подобная группа сформирована при цехе 22 Новосибирского Авиационного Производственного Объединения им. В.П.Чкалова.

2 Сборочный чертеж наружной обшивки верхней панели представлен на чертеже ДП 1301.02.07.10.10.00 СБ и аксонометрическая проекция наружной обшивки – ДП 1301.02.07.10.10. Сборочный чертеж верхней панели - ДП 1301.02.07.10.00.00 СБ.

3 Сборочные чертежи лобиков – ДП 1301.02.07.10.20.00 СБ и ДП 1301.02.07.10.30.00 СБ и их аксонометрические проекции – ДП 1301.02.07.10.20 и ДП 1301.02.07.10.30.

4 О подготовке теоретической информации речь пойдет в расчетном разделе настоящей работы.

5 ПСС – плоскость симметрии самолета; СГФ – строительная горизонталь фюзеляжа; плоскость дистанции «0» - плоскость, проходящая через самую крайнею носовую точку фюзеляжа и взаимно перпендикулярная к ПСС и СГФ.

6 Intersection Curve – «кривая пересечения» - позволяет находить линию пересечения двух или более поверхностей.

7 Section – «сечение» - позволяет находить линию пересечения поверхностей с указанной плоскостью или несколькими плоскостями.

8 Offset on face – «эквидистанта по поверхности» - строит линию, лежащую на указанной плоскости, эквидистантную указанной линии, лежащей на той же плоскости.

9 Offset sheet body – «эквидистанта листового тела» - строит поверхность эквидистантную заданной.

10 Trim body – «обрезка тела» - удаляет часть тела ограниченную указанной плоскостью или поверхностью.

11 Ruled – «линовать» - строит линейчатую поверхность по двум указанным контурам или двум кривым.

12 Sew – «шить; сшивать» - строит поверхность базируясь на указанные поверхности, «сшивая» их.

13 Thicken Sheet – «утолщение листа» - строит твердое тело эквидистантно перемещая указанную поверхность. У команды имеется три параметра: First Offset – первая эквидистанта; Second Offset – вторая эквидистанта; Tolerance – точность. Для первого слоя First Offset устанавливается равной нулю, а Second Offset – равной толщине слоя (0,12мм). Для второго слоя First Offset устанавливается равной толщине первого слоя, а Second Offset – толщина первого слоя плюс толщина второго слоя (0,09мм). Для следующих слоев: к первой эквидистанте предыдущего слоя прибавляется толщина предыдущего слоя, ко второй эквидистанте предыдущего слоя добавляется толщина моделируемого слоя. Точность по умолчанию стоит равной 0,01мм, эта величина соизмерима с толщинами слоев, поэтому ее необходимо уменьшить до 0,0001мм, иначе система может сбоить.

14 - толщина i-го слоя.

15 Под «телом» понимается твердое тело – набор поверхностей, образующих замкнутый объем.

16 В системе «Unigraphics» файл, содержащий модель детали, подсборки или сборки называется «часть», подразумевая, что каждая деталь является составной частью некоторого сборочного проекта.

17 NC – Numeric Control – «числовое управление».

18 Гибридные композиционные материалы – композиционные материалы, в которых используются слои двух и более типов материалов (например, стеклоткань, углеродная лента и т.п.).

19 ПКМ – полимерный композиционный материал.


ЛИТЕРАТУРА.doc

— 31.00 Кб (Открыть файл, Скачать файл)

Охрана труда.doc

— 166.50 Кб (Открыть файл, Скачать файл)

Расчетный.doc

— 368.00 Кб (Открыть файл, Скачать файл)

ред.doc

— 124.00 Кб (Открыть файл, Скачать файл)

СОДЕРЖАНИЕ.doc

— 56.50 Кб (Открыть файл, Скачать файл)

Информация о работе Автоматизированное проектирование деталей крыла