Автоматизированное проектирование деталей крыла

Автор работы: Пользователь скрыл имя, 11 Ноября 2012 в 11:00, реферат

Краткое описание

На всех этапах создания новых изделий – от проектирования до изготовления, приходится решать разнообразные геометрические задачи. В одних областях эти задачи играют подчиненную роль, в других – функциональные качества изделия решающим образом зависят от внешних форм отдельных узлов и взаимной их компоновки. Особенно важны задачи формообразования в проектировании аэро- и гидродинамических обводов агрегатов летательных аппаратов, рабочих колес, направляющих и отводящих каналов турбин. Здесь ни одна из существенных физических и технологических задач не может быть решена в отрыве разработки формы.
От формы изделия зависит его эстетическое восприятие, которое может меняться под воздействием различных факторов. Прагматическая и эстетическая компоненты входят в геометрию различных изделий в неодинаковых пропорциях. Иногда они достигают полного единства, например, в совершенных обводах современного воздушного лайнера или сверхзвукового истребителя, а иногда отдельные детали конструкций могут не обладать эстетическим воздействием, но выполнять важные функции.

Содержание работы

ВВЕДЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Развитие автоматизации технологической подготовки производства и ее современное состояние . . . . . . . . . . . . . . . . . . . 7
Обзор САПР и их краткое описание . . . . . . . . . . . . . . . . . . . . . . . . .9

КОНСТРУКТОРСКИЙ РАЗДЕЛ
Описание конструкции крыла . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Плазово-шаблонный метод производства . . . . . . . . . . . . . . . . . . . 16
Автоматизированное проектирование деталей крыла . . . . . . . .20
Анализ конструкции крыла и используемых материалов, необходимый для производства шаблонов и оснастки . . . . . .21
Проектирование деталей . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Трехмерная увязка конструкции . . . . . . . . . . . . . . . . . . . . . . . .32

ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ
Изготовление шаблонов и оснастки . . . . . . . . . . . . . . . . . . . . . . . . 33
Изготовление шаблонов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Производство оснастки . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Изготовление деталей крыла . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Изготовление деталей из композиционных материалов . . . . .57
Изготовление механообрабатываемых деталей . . . . . . . . . . . .60
Изготовление листовых деталей . . . . . . . . . . . . . . . . . . . . . . . .61
РАСЧЕТНЫЙ РАЗДЕЛ

Составление математической модели теоретических обводов крыла . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Классификация несущих поверхностей . . . . . . . . . . . . . . . . . .64
Основные геометрические характеристики крыла . . . . . . . . . 65
Геометрические характеристики аэродинамического профиля . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Проектирование поверхности линейчатого крыла . . . . . . . . . 76

РАЗДЕЛ ОХРАНЫ ТРУДА
Техника безопасности на участке механообработки . . . . . . . . . . 80
Требования безопасности, предъявляемые к оборудованию .82
Опасные зоны оборудования и средства их защиты . . . . . . . .84
Охрана труда в автоматизированных производствах . . . . . . .87
Защита от поражения током электрооборудования . . . . . . . . . . 89
Охрана труда в автоматизированных производствах . . . . . . .89
Защитное заземление . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Зануление . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

ЗАКЛЮЧЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ЛИТЕРАТУРА. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

Содержимое работы - 7 файлов

ВВЕДЕНИЕ.doc

— 101.00 Кб (Открыть файл, Скачать файл)

КиТ.doc

— 4.89 Мб (Скачать файл)


Еще одним этапом предварительного анализа является поиск ответа на вопрос: «С чего начать?». Дело в том, что, не имея готовых моделей обшивок, как в нашем случае, и лонжеронов, нельзя смоделировать нервюры, потому что контуры нервюр сопряженные с поверхностями обшивок, заданы в чертежах нервюр с базой на поверхности обшивок. К тому же, моделируя нервюры, полезно иметь готовые, не только обшивки, но и лонжероны, чтобы сразу, на этапе создания модели, увязывать нервюры с другими деталями. А не переделывать, в случае неточных чертежей, созданную модель после стыковки с другими сопряженными деталями.

    1. Проектирование деталей

Для проектирования деталей крыла опорной информацией служит теоретическая информация4 крыла. Теоретическая информация включает: -

    • математические модели поверхностей теоретических (аэродинамических) обводов крыла;
    • самолетные базовые плоскости (ПСС, СГФ, плоскость дистанции «0» 5);
    • крыльевые базовые плоскости (плоскость хорд крыла, плоскость симметрии крыла, как правило, совпадает с самолетной);
    • конструктивно-силовая разбивка крыла (плоскости нервюр, лонжеронов; оси фар, качалок управления, вращения элеронов, закрылков и т.п.).


Подробно процесс моделирования  в системе «Unigraphics» рассмотрим на примере наружной обшивки верхней панели крыла (сборочный чертеж ДП 1301.02.07.10.10.00 СБ и результат построения – аксонометрическая проекция детали ДП 1301.02.07.10.10).

Обшивка склеивается из 19 чередующихся слоев ткани СВМ, углеродной ленты ЭЛУР-0,08ПА и ткани УТ-900-2,5А. Первые 7 слоев образуют саму обшивку, остальные – усиления вдоль лонжерона №2, и по кромкам обшивки. Толщина обшивки рассчитана из условия толщины монослоя материала, которые заданны в технологических требованиях на чертежах:

    • для ткани СВМ - ;
    • для углеродной ленты ЭЛУР-0,08ПА - ;
    • для ткани УТ-900-2,5А - .

Обшивка имеет подсечки по передней кромке под лобики крыла, по концевой кромке под законцовку крыла, по корневой кромке под зализ, а также две подсечки глубиной 5мм вокруг окон под заправочные горловины. Первый слой, выполненный из ткани СВМ, образует аэродинамическую поверхность. Второй и шестой слои (ЭЛУР-0,08ПА) – усиление, простирающееся по всей ширине обшивки, от корневого обреза обшивки (корневой обрез образует линия пересечения теоретических поверхностей крыла и зализа) до оси нервюры №5 (заходит за ось на 20мм). Третий и пятый слои (ЭЛУР-0,08ПА) – усиления обшивки по осям нервюр. Четвертый слой (ЭЛУР-0,08ПА) – усиление в области топливных баков, проходит между лобовой кромкой обшивки и заходит за ось лонжерона №1 на 45мм – по ширине, и от корневого обреза до оси нервюры №4 (заходит за ось на 40мм) – в продольном направлении. Седьмой слой (ткань СВМ) обкладывает все слои со второго по шестой и имеет обрезы такие же, как у первого слоя. Слои с 8-го по 19-й образуют, как уже было сказано, усиления обшивки по кромкам и вдоль лонжерона №2.


Построение математической модели обшивки сводиться к моделированию ее слоев. Методика создания многослойных конструкций в памяти компьютера схожа с технологией изготовления таких конструкций, т.е. каждый последующий слой нельзя наклеить (или смоделировать) если отсутствуют предыдущие слои. Общая схема моделирования представлена на рис. 5.1. в виде блок-схемы. По представленной схеме моделировались все обшивки крыла.


Создание математической модели наружной обшивки верхней панели можно представить в виде следующей последовательности этапов моделирования.

    1. Моделирование базовой поверхности, это наружная поверхность обшивки, являющаяся рабочей поверхностью оснастки. От этой поверхности восстанавливаются все слои один за другим.


      1. Определим контуры обрезов обшивки и контуры начала подсечек при помощи команд Intersection curve6, Section7 и Offset on face8, принадлежащих модулю Curve.
      2. Строим поверхности нормальные теоретической поверхности крыла и проходящие через кривые созданные на предыдущем шаге, для этого используем команды модуля Free Form Feature.
      3. Строим эквидистантные поверхности подсечек командой Offset sheet body9 модуля Free Form Feature.
      4. Обрезку основной поверхности и поверхностей подсечек согласно чертежу по поверхностям созданным в пункте 1.2. осуществляем командой Trim body10 модуля Feature Operation.
      5. Строем поверхности перехода с основной поверхности к поверхности подсечки командой Ruled11 модуля Free Form Feature.
      6. Обрезку всех созданных поверхностей (кроме поверхностей созданных в пункте 1.2.) друг о друга выполняем, вновь используя команду Trim body.


      1. «Сшивание» всех поверхностей в одну осуществим командой Sew12 модуля Feature Operation. Таким образом, заканчивая моделирование базовой поверхности.
    1. Моделирование первого слоя обшивки осуществляется командой Thicken sheet13 модуля Form Feature от базовой поверхности с заданием первой эквидистанты, равной 0, и с заданием второй, – равной 14.
    2. Второй слой обшивки получается в результате следующих действий:
      1. Через линию, полученную командой Offset on face от линии пересечения плоскости нервюры №5 с теоретической поверхностью крыла, строим нормальную к теоретической поверхность.
      2. Используя команду Thicken sheet, строим тело второго слоя с заданием первой эквидистанты, равной и второй - .
      3. Полученное тело15 обрезаем поверхностью полученной в пункте 3.1. командой Trim body, тем самым, заканчиваем моделирование второго слоя.


    1. Третий слой обшивки представляет собой 11 полос материала, расположенных вдоль нервюр.
      1. Строим линии, образующие обрезы полос слоя командой Offset on face от кривых пересечения плоскостей нервюр и теоретической поверхности.
      2. Строим к теории крыла через каждую из полученных линий нормальные поверхности к теоретической поверхности крыла.
      3. Вновь используя команду Thicken sheet, строим 11 тел с заданием первой и второй эквидистант, равными и , соответственно.
      4. Обрезаем полученные тела поверхностями (команда Trim body), полученными в пункте 4.2. так, чтобы получить 11 полос вдоль каждой нервюры.
    2. Моделирование четвертого слоя обшивки.
      1. Выделяем внутренние поверхности ранее смоделированных слоев (2 и 3) командой Extract Geometry модуля Form Feature.
      2. Объединяем полученные поверхности командой Sew. Таким образом, получаем базовую поверхность для моделирования слоя 4.
      3. Строим нормальную к теоретической поверхности поверхность через кривую, образованную командой Offset on face от кривой пересечения теории и плоскости лонжерона №1.
      4. Вновь используя команду Thicken sheet с заданием первой и второй эквидистант, равными 0 и , соответственно, моделируем тело четвертого слоя.
      5. Полученное тело обрезаем поверхностью (команда Trim body) из пункта 5.2. и одной из поверхностей созданных в процессе создания модели третьего слоя согласно чертежу.
    3. Моделирование пятого слоя обшивки. Пятый слой является усиливающим слоем, как и третий, и представляет собой полосы ткани вдоль нервюр №2, 2а, 3, 3а, 4 и 6.
      1. Используя команду Extract Geometry, выделяем внутренние поверхности слоев 1, 2, 3 и 4 и объединяем (сшиваем) эти поверхности, тем самым получаем базовую поверхность пятого слоя.
      2. От полученной поверхности командой Thicken Sheet строим 6 тел.
      3. Обрезав эти тела поверхностями из пункта 4.2. (команда Trim body), получим полосы материала вдоль нервюр №2, 2а, 3, 3а, 4 и 6.
    4. Моделирование шестого слоя обшивки.
      1. Вновь командой Extract Geometry выделяем внутренние поверхности ранее созданных слоев (2 – 5) и сшиваем их командой Sew.
      2. От полученной поверхности строим тело шестого слоя (команда Thicken sheet).
      3. Созданное тело обрезаем поверхностью, полученной в пункте 3.1.
    5. Моделирование седьмого слоя обшивки.


      1. Командой Extract Geometry выделяем внутренние поверхности слоев 1, 2, 3, 5 и 6 и командой Sew сшиваем их.
      2. Строим тело седьмого слоя от поверхности, созданной в предыдущем пункте, используя команду Thicken Sheet.

Седьмой слой – последний  слой обшивки. Остальные слои обшивки являются, как уже было отмечено, усиливающими. Внутренняя поверхность седьмого слоя является базовой поверхностью для моделирования остальных слоев. Методику моделирования оставшихся слоев можно коротко описать следующей последовательностью действий.

    1. Кривыми на теоретической поверхности размечаем контур обрезов слоев при помощи команд Intersection curve, Section и Offset on face.
    2. Через полученные линии строим нормальные поверхности к теории.
    3. От базовой поверхности командой Thicken sheet строим восьмой слой с заданием первой эквидистанты, равной 0, и второй - . А при помощи команды Trim body обрезаем тело восьмого слоя поверхностями, образованными на предыдущем шаге.
    4. Девятый слой так же строиться командой Thicken sheet с заданием первой эквидистанты, равной , и второй - . И обрезку девятого слоя осуществляем по поверхностям из пункта 2.

14. Девятнадцатый последний слой образуется заданием эквидистант, равными и , и его обрезка осуществляется теми же поверхностями из пункта 2.


Создание математической модели какой-либо детали способствует отличной проверке ее чертежа за счет того, что при создании модели проверяется вся информация, отраженная на чертеже и в спецификации. Например, без какого-либо размера не возможно создать модель и, тем более, изготовить деталь.

    1. Трехмерная увязка конструкции

Обычно моделирование деталей имеющих разные номера выполняется в разных файлах с именами, соответствующими номеру детали, и впоследствии модели деталей собираются в единую конструкцию узла (агрегата) в файле сборки. Такую возможность – возможность создания сборочных проектов предоставляет система «Unigraphics».

Сборочный проект электронный  аналог сборочного чертежа в трехмерном виртуальном измерении. Для удобства, сборки именуются номером сборочного чертежа и иерархия сборочных единиц и деталей, входящих в чертеж повторяется в сборочном проекте.

На этапе проектирования деталей конструктор может выяснить неточности чертежей, такие как отсутствие каких-либо размеров, неточность графики, несоответствие зазоров в случае, где явно просматривается размерная цепь. Но основная проверка конструкции проводиться именно в сборочных проектах или просто сборках, т.к. именно здесь легко проверить зазоры, «перехлесты» тел деталей (когда одно тело врезается в другое, например) и т.п., к тому же система предоставляет определенный набор функций для этого. Следует добавить, что система позволяет редактировать модели деталей непосредственно в сборке и, более того, можно создавать новые модели сразу в сборке.

В случае с верхней панелью удобно создать ее сборочный проект по окончании моделирования всех слоев наружной и внутренней обшивки. А моделирование сотового заполнителя и окантовок осуществлять уже в сборочном проекте, создав в нем новую часть16. Такой подход объясняется тем, что рельефные внутренние поверхности наружной и внутренней обшивки необходимы, как основа для создания модели сотового заполнителя панели. 


  1. Изготовление шаблонов и оснастки

 Высоки требования  к выполнению внешних контуров  современных самолетов и к обеспечению взаимозаменяемости его агрегатов, узлов и деталей приводят к необходимости создания большого количества объемной оснастки, применяемой заготовительными цехами и цехами сборочной оснастки: пространственные макеты агрегатов, макеты сечений, обтяжные пуансоны, болванки, формблоки, оправки, контрольные приспособления и др.

Взаимосвязь шаблонов и  объемной оснастки и их применение при изготовлении заготовительной и сборочной оснастки лучше всего проследить по схеме увязки плазово-шаблонной, заготовительной и сборочной оснастки приведенной на рис.6.1.



    1. Изготовление шаблонов

Шаблоны представляют собой  копии контуров и разверток самолетных деталей. Они обычно выполняются из тонкой листовой стали и служат для изготовления и контроля технологической оснастки и деталей самолета. Шаблонами называются жесткие носители формы и размеров, обеспечивающие взаимозаменяемость деталей, узлов и агрегатов самолета при их изготовлении.

Плазово-шаблонный метод  производства вносит свои особенности в технический контроль деталей и узлов самолета. Здесь в отличие от общего машиностроения точность деталей и узлов оценивается путем их сопоставления с соответствующей плазово-шаблонной оснасткой.

Основными характеристиками шаблона являются: контур, координатные и конструктивные оси, установочные линии, отверстия и нанесенная на шаблон техническая информация.

В зависимости от назначения шаблоны подразделяют на три основные группы:

    • Основные шаблоны применяются для изготовления, технологической увязки и контроля производственных шаблонов. Эти шаблоны являются первоисточниками контуров и технической информации и в производственные цехи завода не выдаются.
    • Производственные шаблоны применяются для изготовления и контроля заготовительно-штамповочной и стапельно-сборочной оснастки, а также деталей самолета. Эти шаблоны хранятся в производственных цехах завода.
    • Эталонные (контрольные) шаблоны применяются в исключительных случаях, например, при изготовлении шаблона обрезки контура и кондуктора для сверления отверстий сложной конфигурации, а также при изготовлении на смежных заводах самолетных горячештампованных, литых и механообрабатываемых деталей. В этом случае эталонный комплект шаблонов пересылают заводу-изготовителю деталей.

ЛИТЕРАТУРА.doc

— 31.00 Кб (Открыть файл, Скачать файл)

Охрана труда.doc

— 166.50 Кб (Открыть файл, Скачать файл)

Расчетный.doc

— 368.00 Кб (Открыть файл, Скачать файл)

ред.doc

— 124.00 Кб (Открыть файл, Скачать файл)

СОДЕРЖАНИЕ.doc

— 56.50 Кб (Открыть файл, Скачать файл)

Информация о работе Автоматизированное проектирование деталей крыла