Автор работы: Пользователь скрыл имя, 19 Ноября 2011 в 19:42, реферат
В данной работе автор сделал попытку разобраться в сущности геоинформационных систем, а так же почему эти технологии не являются достаточно значимым инструментом в современном туристическом бизнесе России, тогда как за рубежом геоинформационные технологии являются неотъемлемой частью некоторых крупных туристических и социокультурных проектов.
Геоинформационные системы в туризме.
Содержание
В данной работе автор сделал попытку разобраться в сущности геоинформационных систем, а так же почему эти технологии не являются достаточно значимым инструментом в современном туристическом бизнесе России, тогда как за рубежом геоинформационные технологии являются неотъемлемой частью некоторых крупных туристических и социокультурных проектов.
Географическая
информационная система (geographic information system, GIS),
ГИС - информационная система, обеспечивающая
сбор, хранение, обработку, доступ, отображение
и распространение пространственно-
ГИС содержит данные о пространственных объектах в форме их цифровых представлений (векторных, растровых, квадротомических и иных).
По территориальному охвату различают глобальные, или планетарные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).
ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS), Туристические т.п.
Среди них особое наименование, как особо широко распространенные, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде. [1]
Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой.
Если обойтись без обобщений и образов, то ГИС - это современная компьютерная технология для картирования и анализа объектов реального мира, также событий, происходящих на нашей планете.
Первым вопросом человека, не знакомого с географическими информационными системами (ГИС), будет, конечно, "а зачем мне это нужно?".
На первый взгляд достаточно очевидным является только применение ГИС в подготовке и распечатке карт и, может быть, в обработке аэро- и космических снимков. Реальный же спектр применений ГИС гораздо шире, и чтобы оценить его, нам стоит взглянуть на применение компьютеров вообще, тогда место ГИС будет представляться гораздо яснее.
Компьютеры дают не только большее удобство выполнения известных операций с документами, они являются носителем нового направления человеческой деятельности - информационных технологий, и современное общество основано в значительной степени на них.
Информацией в
нашем понимании следует
Эта технология объединяет традиционные операции при работе с базами данных, такими, как запрос и статистический анализ, с преимуществами полноценной визуализации и географического (пространственного) анализа, которые предоставляет карта. Эти возможности отличают ГИС от других информационных систем и обеспечивают уникальные возможности для ее применения в широком спектре задач, связанных с анализом и прогнозом явлений и событий окружающего мира, с осмыслением и выделением главных факторов и причин, а также их возможных последствий, с планированием стратегических решений и текущих последствий предпринимаемых действий.
Создание карт и географический анализ не являются чем-то абсолютно новым. Однако технология ГИС предоставляет новый, более соответствующий современности, более эффективный, удобный и быстрый подход к анализу проблем и решению задач, стоящих перед человечеством в целом, и конкретной организацией или группой людей, в частности. Она автоматизирует процедуру анализа и прогноза.
До
начала применения ГИС лишь немногие обладали
искусством обобщения и полноценного
анализа географической информации с
целью обоснованного принятия оптимальных
решений, основанных на современных подходах
и средствах.
В настоящее время ГИС - это многомиллионная
индустрия, в которую вовлечены сотни
тысяч людей во всем мире. ГИС изучают
в школах, колледжах и университетах. Эту
технологию применяют практически во
всех сферах человеческой деятельности
- будь то анализ таких глобальных проблем
как перенаселение, загрязнение территории,
сокращение лесных угодий, природные катастрофы,
так и решение частных задач, таких как
поиск наилучшего маршрута между пунктами
- экскурсионный и экстремальный туризм,
подбор оптимального расположения нового
офиса, поиск дома по его адресу, прокладка
трубопровода на местности, различные
муниципальные задачи.
Как же удается с помощью одной технологии решать столь разные задачи? Чтобы это понять, рассмотрим последовательно устройство, работу и примеры применения ГИС.
Работающая ГИС включает в себя пять ключевых составляющих: аппаратные средства, программное обеспечение, данные, исполнители и методы (см. рис. 2).
Это компьютер, на котором запущена ГИС. В настоящее время ГИС работают на различных типах компьютерных платформ, от централизованных серверов до отдельных или связанных сетью настольных компьютеров.
ПО ГИС содержит функции и инструменты, необходимые для хранения, анализа и визуализации географической (пространственной) информации. Ключевыми компонентами программных продуктов являются: инструменты для ввода и оперирования географической информацией; система управления базой данных (DBMS или СУБД); инструменты поддержки пространственных запросов, анализа и визуализации (отображения); графический пользовательский интерфейс (GUI или ГИП) для легкого доступа к инструментам и функциям.
Это вероятно
наиболее важный компонент ГИС.
Широкое применение технологии ГИС невозможно без людей, которые работают с программными продуктами и разрабатывают планы их использования при решении реальных задач. Пользователями ГИС могут быть как технические специалисты, разрабатывающие и поддерживающие систему, так и обычные сотрудники (конечные пользователи), которым ГИС помогает решать текущие каждодневные дела и проблемы.
Успешность и эффективность (в том числе экономическая) применения ГИС во многом зависит от правильно составленного плана и правил работы, которые составляются в соответствии со спецификой задач и работы каждой организации.
ГИС хранит информацию о реальном мире в виде набора тематических слоев, которые объединены на основе географического положения. Этот простой, но очень гибкий подход доказал свою ценность при решении разнообразных реальных задач: для отслеживания передвижения транспортных средств и материалов, детального отображения реальной обстановки и планируемых мероприятий, моделирования глобальной циркуляции атмосферы.
Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам, или ссылки на адрес, почтовый индекс, избирательный округ или округ переписи населения, идентификатор земельного или лесного участка, название дороги или километровый столб на магистрали и т.п.
Рисунок 1 послойное
представление географической информации
в ГИС.
При
использовании подобных ссылок для
автоматического определения
ГИС может работать с двумя существенно отличающимися типами данных - векторными и растровыми. В векторной модели информация о точках, линиях и полигонах кодируется и хранится в виде набора координат X,Y (в современных ГИС часто добавляется третья пространственная и четвертая, например, временная координата координата). Местоположение точки (точечного объекта), например Приметного камня, описывается парой координат (X,Y). Линейные объекты, такие как дороги, реки или трубопроводы, сохраняются как наборы координат X,Y. Полигональные объекты, типа речных водосборов, земельных участков или областей обслуживания, хранятся в виде замкнутого набора координат.
Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как плотность населения или доступность объектов.
Растровая модель оптимальна для работы с непрерывными свойствами. Растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке. Обе модели имеют свои преимущества и недостатки.
Современные ГИС могут работать как с векторными, так и с растровыми моделями данных.
ГИС общего назначения, в числе прочего, обычно выполняет пять процедур (задач) с данными: ввод, манипулирование, управление, запрос и анализ, визуализацию.
Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных с бумажных карт в компьютерные файлы называется оцифровкой. В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных проектов, либо, при сравнительно небольшом объеме работ, данные можно вводить с помощью дигитайзера. Некоторые ГИС имеют встроенные векторизаторы, автоматизирующие процесс оцифровки растровых изображений. Многие данные уже переведены в форматы, напрямую воспринимаемые ГИС-пакетами.
Часто для выполнения конкретного проекта имеющиеся данные нужно дополнительно видоизменить в соответствии с требованиями вашей системы. Например, географическая информация может быть в разных масштабах (осевые линии улиц имеются в масштабе 1: 100 000, границы округов переписи населения - в масштабе 1: 50 000, а жилые объекты - в масштабе 1: 10 000). Для совместной обработки и визуализации все данные удобнее представить в едином масштабе и одинаковой картографической проекции. ГИС-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи.
В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять системы управления базами данных (СУБД), специальные компьютерные средства для работы с интегрированными наборами данных (базами данных) (см. рис. 5). В ГИС наиболее удобно использовать реляционную структуру, при которой данные хранятся в табличной форме. При этом для связывания таблиц применяются общие поля. Этот простой подход достаточно гибок и широко используется во многих, как ГИС, так и не ГИС приложениях.
При наличии ГИС и географической информации Вы сможете получать ответы как на простые вопросы (Кто владелец данного земельного участка, отеля, курорта? На каком расстоянии друг от друга расположены эти объекты? Где количество номеров в данных гостиницах?), так и на более сложные, требующие дополнительного анализа, запросы (Где есть места для строительства нового кемпинга? Каков основный тип почв под еловыми лесами? Как повлияет на движение транспорта строительство новой дороги?). Запросы можно задавать как простым щелчком мышью на определенном объекте, так и посредством развитых аналитических средств.