Автор работы: Пользователь скрыл имя, 05 Декабря 2010 в 19:46, лекция
ОСОБЕННОСТИ СТРУКТУРЫ И МЕХАНИЧЕСКИХ СВОЙСТВ БРОДЯЩЕГО ТЕСТА. ВЛИЯНИЕ СОВРЕМЕННЫХ СПОСОБОВ ТЕСТОВЕДЕНИЯ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТЕСТА И КАЧЕСТВО ХЛЕБНЫХ ИЗДЕЛИИ.
Структурно-механические характеристики теста из пшеничной муки 1 сорта влажностью 44%
Номер образца |
Продолжительность выдержки, ч |
Е 10 , Па |
η 10 Па с |
η/Е, с |
П, % |
Э, % |
К , % |
К , % |
1 2 |
0 2 0 2 |
8,5/6,0 3,5/2,9 12,0/7,6 6,4/3,8 |
5,9/5,4 1,9/6,2 6,4/5,4 3,2/8,4 |
69/89 53/220 50/71 50/221 |
72/67 78/45 77/73 78/45 |
74/64 82/65 78/67 76/70 |
59/52 47/50 |
68/—15 50/—55 |
Примечание. В числителе приведены данные по небродящему тесту, в знаменателе — по бродящему.
Тесто из пшеничной муки I сорта является менее сложной лабильной структурой, чем тесто из муки II сорта: в нем менее активны процессы гидролиза, меньше содержится сахаров и других соединений, изменяющих во времени упруго-эластичные свойства структуры. По этой причине отличия структуры небродяще- го теста из муки I сорта должны быть наиболее отчетливы.
Как показывают результаты табл. 4.1, непосредственно после замешивания небродящее тесто обоих образцов имело модули сдвига и вязкость, относительные пластичность и эластичность большие, а η/Е меньшее, чем у бродящего теста. После 2-часового брожения вязкость теста и η/Е не уменьшились, как у небродящего теста, а наоборот, увеличились, а пластичность уменьшилась. По указанной причине показатель К имел отрицательную величину, характеризуя не разжижение, а увеличение вязкости структуры.
Результаты сравнения механических свойств небродящего и бродящего пшеничного теста из двух образцов муки II сорта, приведенные в табл. 3.1, в основном полностью подтверждают закономерности, установленные для теста из муки I сорта; они, однако, представляют несомненный интерес потому, что процесс его выдержки продолжался до 24 ч. Известно, что брожение прессованных хлебопекарных дрожжей при их обычной дозировке (около 1 % к муке) заканчивается обычно на отрезке времени 3—4 ч (продолжительность брожения опары). По истечении этого времени тесто пополняют свежей порцией муки и перемешивают, после чего брожение в нем возобновляется. При отсутствии добавок муки и перемешивания спиртовое брожение уступает кислотному. Такое тесто, приобретая излишние количества этилового спирта и кислот, растворяет белки клейковины (разжижает), теряя углекислоту — уменьшает объем, становится более плотным. Из табл. 3.1 видно, что бродящее тесто после 6 ч и особенно после 24 ч брожения по величинам модулей сдвига, вязкости, относительных пластичности и эластичности приближается к этим показателям небродящего теста. Это показывает, что процессы дрожжевого брожения продолжительностью до 6 ч являются основной причиной существенных отличий структуры бродящего теста от его небродящей структуры. Опытами установлено, что образцы бродящего пшеничного теста из муки I и II сортов имеют структуру, обладающую более совершенными свойствами упругости-эластичности (меньшим модулем сдвига), большей вязкостью и формоустойчивостью (η/Е), а также большей стабильностью во времени в сравнении со структурой небродящего теста. Основной причиной этих отличий следует считать процесс спиртового брожения хлебопекарных дрожжей в бродящем тесте, образование в нем газонаполненных пор, вызывающих перманентное увеличение объема, развитие упруго-пластичных деформаций и упрочнение структуры вследствие ориентации полимеров в плоскостях сдвига. Кислотное брожение в нем менее значительно и, как показано ниже, влияет на эти свойства путем изменений процессов набухания и растворения соединений муки.
ЗАВИСИМОСТЬ МЕХАНИЧЕСКИХ СВОЙСТВ БРОДЯЩЕГО ТЕСТА И КАЧЕСТВА ХЛЕБА ОТ ВИДА И СОРТА МУКИ
Качество хлебных изделий — их объемный выход, форма, структура пористости и другие характеристики, определяются сортом муки и соответственно номируются ГОСТами.
Структура бродящего теста является непосредственным материалом, из которого получают хлебные изделия путем его термической обработки в печи. Представляло интерес исследование биохимических и структурно-механических свойств бродящего пшеничного теста в зависимости от сорта муки. Для указанной цели семь образцов мягких краснозерных пшениц размалывали на лабораторной мельнице трехсортным помолом с общим выходом в среднем 78%. Затем мы исследовали газообразующую и газоудерживающую способность муки, структурно-механические характеристики сброженного теста после его расстойки, а также сырых клейковинных белков и их содержание в муке, удельный объем (в см3/г) формового, а также HID круглого подового хлеба, выпеченного по ГОСТ 9404—60. Полученные результаты приведены в табл. 4.2. Они показали, что выход сортовой муки даже в условиях лабораторного опытного помола существенно колеблется и тем сильнее, чем выше ее сорт. Таким образом, технология помола зерна должна оказывать влияние на химический состав, следовательно, и на структуру теста. Она является одним из существенных многочисленных факторов, влияющих на качественные показатели муки, теста и хлебных изделий.
Таблица 4.2
Биохимические и структурно-механические характеристики
белков клейковины бродящего теста и хлеба
(средние данные)
Примечание. В числителе данные по белкам, в знаменателе – по тесту.
Технологические свойства зерна и муки каждого сорта характеризует прежде всего их газообразующая способность. Это свойство характеризует способность зерна и муки превращать химическую энергию окисления углеводов в тепловую и механическую энергию движения бродящего теста, преодолевающу инерцию его массы. Определение газообразующей способности муки сопровождается учетом количества выделенной С02. Ее количество, задержанное тестом, определяет его. газоудерживание по приросту объема. Этот физико-химический показатель характеризует своим обратным значением газопроницаемость теста по углекислому газу. Последняя зависит от структуры и величины основных упруго-пластичных (Е, η, η/Е) характеристик теста. Опыты показали, что газообразующая способность муки значительно увеличивалась от высшего к первому и второму сортам, тогда как объемный выход хлеба, наоборот, понижался.
Газоудерживающая способность теста находится в прямой зависимости от газообразующей способности; несмотря на это, она в абсолютном и относительном (в % к газообразованию) значениях не увеличивалась, но заметно и закономерно понижалась с понижением сорта муки. Между абсолютным значением удержанного тестом СО и объемными характеристиками хлеба (объемным Выходом, удельным объемом) имеется тесная прямая зависимость. Изложенное позволяет сделать вывод, что данные характеристики качества хлеба определяются в основном не биохимическими, а физико-химическим (газопроницаемостью) и механическими свойствами (η, Е и η/Е) теста. Последние зависят в основном от соответствующих свойств сырых клейковинных белков и их содержания в тесте.
Опыты показали, что содержание сырых белков клейковины закономерно увеличивалось с понижением силы зерна и влагоем-кости (вязкости) муки и ее сорта. Структура белков муки высшего сорта имела более значительные величины модуля сдвига, а в среднем — и вязкости, чем структура белков муки I сорта. Это свидетельствует о их большей статистической молекулярной массе. Белки муки I сорта имели величину модуля сдвига и вязкость меньшие, чем эти характеристики белков муки II сорта, но превышали их по величине η/Е. Это характеризует их большую эластичность и формоустойчивость.
Газоудерживающая способность теста и объемный выход хлебных изделий прямо зависят от продолжительности периода релаксации напряжений клейковинных белков и теста, или η/Е. Отношение вязкости к модулю клейковинных белков муки II сорта было значительно меньшим, чем у белков муки высшего и I сортов.
Газоудерживающая способность теста из сортовой пшеничной муки зависела от соответствующих величин его модуля сдвига и вязкости. Эти характеристики с понижением сорта муки уменьшались аналогично способности газоудерживания.
Установлено, что бродящее тесто из муки высшего сорта влажностью 44% подобно сырым клейковинным белкам этой муки имело наиболее значительные величины модулей сдвига, вязкости и отношения вязкости к модулю, наименьшую относительную пластичность. Из этого теста были получены хлебные изделия наиболее высокой пористости, удельного объема формового, а также отношения высоты к диаметру подового хлеба. Таким образом, несмотря на значительную вязкость наименьшее газообразование благодаря высокому η/Е из этой муки получено тесто и хлеб высокого объемного выхода. Высокие величины вязкости и η/Е способствовали получению подового хлеба с наиболее высоким Н/Д.
Тесто из муки I сорта влажностью 44% по величинам газоудерживания, механическим характеристикам и качеству хлеба незначительно уступало качеству теста из муки высшего сорта, оно имело пониженные на 14—15% вязкость, η/Е теста, Н/Д. Это свидетельствует о том, что снижение вязкости теста из муки I сорта способствовало как развитию удельного объема формового, так и увеличению расплываемости подового хлеба.
Тесто из муки II сорта имело более высокую влажность (45%). Несмотря на наибольшее газообразование, оно значительно уступало тесту высшего и I сортов муки по величинам газоудерживания, вязкости. Отношение вязкости к модулю у этого теста, как и у клейковинных белков, было меньшим, а относительная пластичность более высокой, чем у теста из муки высшего и I сортов. Качество полученных хлебных изделий было гораздо ниже качества изделий из муки высшего и I сортов.
В целях уточнения влияния структурно-механических характеристик бродящего теста на физические свойства хлебных изделий мы дифференцировали результаты опытов на две группы. Первая группа образцов каждого сорта имела в среднем более высокие, чем среднеарифметические, модули сдвига и вязкость, вторая группа —более низкие. Учтены также характеристики газоудерживания теста и упруго-пластичных свойств сырых клейковинных белков (табл. 4.3).
Усредненные
характеристики теста повышенной и пониженной
вязкости
Из табл. 4.3 видно, что удельный объем хлеба из муки высшего сорта не зависит от величины газоудерживающей способности теста, которая для обеих групп образцов оказалась практически одинаковой. Удельный объем хлеба из муки I и II сортов находился в зависимости от несколько более высокой величины газоудерживающей способности теста второй группы образцов. Количество сырой клейковины по обеим группам образцов для всех сортов муки оказалось примерно одинаковым и не могло влиять на показатели качества хлеба.
Вязкость теста из муки высшего сорта обеих групп образцов оказалась в обратной зависимости, а отношение вязкости к модулю— в прямой зависимости от соответствующих показателей их сырых клейковинных белков, у теста из муки I и II сортов обеих групп образцов — наоборот.
Информация о работе Структурно-механические свойства бродящего теста