Автор работы: Пользователь скрыл имя, 12 Декабря 2011 в 16:13, курсовая работа
Целью данной работы является рассмотрение способов защиты металлов от коррозии и применение этих способов для защиты конструкций и городских коммуникаций.
Введение
Теоретическая часть…………………………………………………………….....7
1.1 Виды коррозий……………………………………………………………….....7
Методы защиты металлов от коррозии……………………………………...11
1.2.1 Защитное покрытия……………………………………………………....11
1.2.2 Электрохимическая защита……………………………………………...24
Ингибиторы……………………………………………………………....26
1.3 Защита конструкций и городских коммуникаций от коррозий…………...30
1.3.1 Внутренняя коррозия в открытых системах теплоснабжения и пути её снижения…………………………………………………………………………..30
1.3.2 Материалы, применяемые для защиты от коррозии…………………37
Заключение
2 Практическая часть
Список используемой литературы
Существенно влияет на коррозионные процессы уровень внешних или внутренних (остаточных) напряжений и их распределение в металле изделия. На коррозию сталей и других металлов, особенно в контакте с грунтом (землей), могут влиять продукты жизнедеятельности микроорганизмов, значительно ускоряющие процессы коррозии [1,2].
Изменение
поверхности металла в
1.2 Методы защиты металлов от коррозии
1.2.1
Защитные покрытия
Защитное покрытие должно быть сплошным, равномерно распределенным по всей поверхности, непроницаемым для окружающей среды, иметь высокую адгезию (прочность сцепления) к металлу, быть твердым и износостойким [3]. Коэффициент теплового расширения должен быть близким к коэффициенту теплового расширения металла защищаемого изделия.
Защитные покрытия подразделяются на металлические и неметаллические.
Металлические покрытия
Нанесение защитных металлических покрытий – один из самых распространенных методов борьбы с коррозией [2,7]. Эти покрытия не только защищают от коррозии, но и придают их поверхности ряд ценных физико-механических свойств: твердость, износоустойчивость, электропроводность, паяемость, отражательную способность, обеспечивают изделиям декоративную отделку и т.д.
По способу защитного действия металлические покрытия делят на катодные и анодные.
Катодные покрытия имеют более положительный, а анодные - более электроотрицательный электродные потенциалы по сравнению с потенциалом металла, на который они нанесены [1]. Так, например, медь, никель, серебро, золото, осажденные на сталь, являются катодными покрытиями, а цинк и кадмий по отношению к этой же стали – анодными покрытиями.
Необходимо отметить, что вид покрытия зависит не только от природы металлов, но и от состава коррозионной среды. Олово по отношению к железу в растворах неорганических кислот и солей играет роль катодного покрытия, а в ряде органических кислот (пищевых консервах) служит анодом. В обычных условиях катодные покрытия защищают металл изделия механически, изолируя его от окружающей среды. Основное требование к катодным покрытиям – беспористость [7,12]. В противном случае при погружении изделия в электролит или при конденсации на его поверхности тонкой пленки влаги обнаженные (в порах или трещинах) участки основного металла становятся анодами, а поверхность покрытия катодом. В местах несплошностей начнется коррозия основного металла, которая может распространяться под покрытие (рис. 1.1 а).
Рисунок
1.1 – Схема коррозии железа с пористым
катодным (а) и анодным (б) покрытием
Анодные покрытия защищают металл изделия не только механически, но главным образом электрохимически. В образовавшемся гальваническом элементе металл покрытия становится анодом и подвергается коррозии, а обнаженные (в порах) участки основного металла выполняют роль катодов и не разрушаются, пока сохраняется электрический контакт покрытия с защищаемым металлом и через систему проходит достаточный ток (рис. 1.1б). Поэтому степень пористости анодных покрытий в отличие от катодных не играет существенной роли.
В
отдельных случаях
Основной метод нанесения защитных металлических покрытий – гальванический. Применяют также термодиффузионный и механотермический методы, металлизацию распылением и погружением в расплав.
Неметаллические покрытия
Большинство металлов окисляется кислородом воздyxa с образованием поверхностных оксидных пленок. Однако эти пленки в силу незначительной толщины не обеспечивают надежной защиты от коррозии. Особенно слабы в этом отношении естественные пленки на железе.
Между
тем в результате определенной химической
или электрохимической
Существуют различные методы получения таких неметаллических пленок, отличающихся химическим составом. Наиболее распространены оксидные и фосфатные пленки, хотя по защитным свойствам они уступают металлическим покрытиям. Процесс изготовления оксидных покрытий на металле получил название оксидирования, а фосфатных — фосфатирования [2,3,4].
Оксидирование. Основное назначение этого процесса — защита черных и цветных металлов от атмосферной коррозии.
Современный
метод оксидирования —
Электрохимическое оксидирование ведут в растворе 4% едкого натра при 65—120°С и анодной плотности тока от 2,5 до 10 А/дм2. Продолжительность анодной обработки не превышает 60 минут.
Качественное
покрытие состоит из магнитной окиси
железа, получающейся в результате
последовательных превращений:
Fe
→ Na2 Fe 02 → Na2
Fe2 04 → Fe3
O4
Оксидирование
черных металлов носит также название
«воронения». Его осуществляют в
растворе состава, г/л: Na OH — 600-700; Na NO2
— 200-250; Na NO3 — 50-100. Температура —
135-145 °С, время 30-90 мин. В процессе происходит
растворение железа с образованием соединений
Na2FeO2 и Na2Fe204,
из которых образуется поверхностная
пленка оксида железа
Na2
Fe 02 + Na2 Fe2
04 + 2H2O = Fe3
O4 + 4 Na OH
Оксидная пленка на малоуглеродистой стали имеет глубокий черный цвет, а на высокоуглеродистых сталях — черный с сероватым оттенком [13]. Для повышения антикоррозионных свойств оксидированное изделие погружают на 2-3 мин в горячий 2-3% раствор мыла, а затем на 5-10 мин - в минеральное трансформаторное или машинное масло при температуре 105-120 °С. После этой операции поверхность покрытия становится блестящей, с равномерной черной окраской. Возможно оксидирование и магниевых сплавов — в хромово-кислых электролитах с последующим нанесением лакокрасочных покрытий. Толщина оксидных пленок составляет 0,8-1,5 мкм.
Противокоррозионные свойства поверхностной пленки оксидов невысоки, поэтому область применения этого метода ограничена. Основное назначение его — декоративная отделка. Почти все стрелковое оружие и ряд точных приборов подвергают воронению, в результате чего изделия приобретают красивый черный цвет. Воронение используют и в том случае, когда необходимо сохранить исходные размеры изделия, так как оксидная пленка составляет всего 1,0-1,5 микрона.
Анодирование. Особенно широко применяется оксидирование алюминия и его сплавов. Это наиболее простой и надежный метод защиты их от коррозионного разрушения. Процесс образования оксидных пленок на поверхности алюминия называют анодированием [12].
В обычных условиях на поверхности алюминия присутствует тонкая пленка оксидов Al2O3 или Al2O3 · nН2О, которая не может защитить его от коррозии. Под воздействием окружающей среды алюминий покрывается слоем рыхлых белых продуктов коррозии. Процесс искусственного образования толстых оксидных пленок может быть проведен химическим и электрохимическим способами.
Пленки,
образующиеся при анодной обработке
алюминия, обладают достаточной толщиной
и рядом ценных свойств. Они защищают
металл от коррозии и являются хорошим
подслоем под лакокрасочные покрытия.
Анодные пленки на алюминии обладают
большим сопротивлением к истиранию,
имеют высокое омическое
В растворах слабых кислот (борная, винная, лимонная) и их солей оксидная пленка не растворяется. В этом случае получают беспористые, плотные, не проводящие электрический ток покрытия толщиной до 1 мкм. Такие пленки используют в качестве электроизоляционных покрытий в производстве конденсаторов.
Электролиты второго типа содержат растворы серной, хромовой и щавелевой кислот, в которых происходит частичное растворение оксидной пленки алюминия. В этих электролитах получают пористые пленки толщиной от 1 до 50 мкм.
На практике анодирование алюминия и его сплавов проводят в растворах серной кислоты концентрацией 180-200 г/л, хромового ангидрида (3 %) и щавелевой кислоты (3-10%) с плотностью тока 80-200 А/м2, при напряжении до 24В в течение 15-60 мин [12,13]. Катоды выполняются из свинца или стали марки 12Х18Н9Т. Для повышения защитных свойств изделие после оксидирования обрабатывают паром или горячей водой и далее в горячих растворах хроматов и бихроматов. При обработке паром в порах пленки образуется гидроксид алюминия, а в хромовых растворах - более стойкие соединения типа (АlО)2СrO4.
Оксид
образуется на поверхности алюминия
в результате анодного окисления [13]
2А1
+ ЗН2О = А12О3 + 6Н+
+ 6 е
Он состоит из двух слоев: плотного барьерного слоя толщиной 0,01-0,1 мкм, расположенного непосредственно на поверхности металла, и внешнего пористого слоя толщиной до 200-400 мкм.
Химическое оксидирование алюминия и его сплавов осуществляют в щелочных хромистых растворах состава, г/л: Na2 Cr O4 — 15; Na OH — 2,5 и Na2CO3 — 50 при температуре 90-95 °С в течение 5-10 мин. Образуются пленки толщиной 3-4 мкм с невысокими механическими и диэлектрическими свойствами. Процесс простой, быстрый и не требует специального оборудования.
Защита металлов лакокрасочными покрытиями — наиболее старый и один из самых распространенных способов защиты от коррозии.
Основными
достоинствами лакокрасочных
являются:
При
соответствующем подборе
К
недостаткам лакокрасочных
Ежегодно более 80 % металлоизделий, используемых в народном хозяйстве, подвергают окрашиванию. В 1999 г производство лакокрасочных материалов достигло 26,7 млн. т. Это свидетельствует об огромных масштабах средств, вовлеченных в сферу производства этого вида противокоррозионной защиты.
Эффективность
применения лакокрасочных покрытий
целесообразна при условии
Защитные действия лакокрасочного покрытия заключаются в создании на поверхности металлического изделия сплошной пленки, которая препятствует агрессивному воздействию окружающей среды и предохраняет металл от разрушения [1,15].
Компонентами лакокрасочных материалов служат пленкообразующие вещества, растворители, пластификаторы, пигменты, наполнители, катализаторы (сиккативы).