Автор работы: Пользователь скрыл имя, 09 Октября 2011 в 23:53, курсовая работа
Получение спирта из мелассы
МЕЛАССА
Мелассой называют последний маточный раствор — оттек, получающийся при отделении кристаллов сахарозы на центрифугах. В мелассе содержатся несахара сока сахарной свеклы или сахарного тростника, не удаляемые при его химической очистке, и сахароза, которую выделять классическим методом кристаллизации уже экономически невыгодно. При выработке сахара из свеклы выход мелассы в расчете на безводную колеблется от 3,5 до 5 % от ее массы. С мелассой отходит от 10 до 15 % всего сахара, содержащегося в перерабатываемой свекле.
В соответствии с видом исходного сырья для производства сахара различают свекловичную и тростниковую мелассу. В нашей стране сахарный тростник не произрастает, но на сахарных заводах после свеклы на белый сахар перерабатывают импортный сахар-сырец. Получаемую при этом мелассу называют сырцовой.
Меласса представляет собой густую вязкую жидкость темно- коричневого цвета со специфическим запахом карамели и мела- ноидинов; свекловичная меласса имеет еще и запах триметил- амина и других летучих аминов, образующихся при разложении бетаина.
Для спиртового производства меласса — наилучшее сырье. Ценность ее заключается в том, что наряду с высоким содержанием сахара в ней находятся все вещества, необходимые для нор- мальной жизнедеятельности дрожжей. При переработке мелассы упрощается технологическая схема, так как исключаются операции разваривания сырья и осахаривания крахмала ферментами солода или культур плесневых грибов. В мелассном сусле отсутствуют декстрины и неосахаренный крахмал, поэтому оно быстрее сбраживается, при этом уменьшаются потери сбраживаемых углеводов и увеличивается выход спирта в пересчете на условный крахмал, снижается себестоимость спирта и возрастает производительность труда. Из мелассной барды можно получать большой ассортимент ценных для народного хозяйства продуктов.
ХИМИЧЕСКИЙ СОСТАВ СВЕКЛОВИЧНОЙ МЕЛАССЫ
Свекловичная
меласса имеет сложный и
В
свекловичной мелассе содержится в
среднем 80 % сухих веществ и 20 % воды,
значительная часть которой находится
в связанном состоянии
Общее
содержание сухих веществ в свекловичной
мелассе непосредственно после
центрифугирования утфеля (кристаллизованного
сахарного раствора) составляет около
85 %. Концентрация реализуемой (товарной)
мелассы несколько меньше, так как она
разбавляется водой и конденсатом при
промывании и про- паривании трубопроводов,
по которым транспортируется в баки. Благодаря
снижению концентрации не образуются
кристаллы сахара при хранении, уменьшается
вязкость, в результате чего облегчаются
отгрузка мелассы, особенно в холодное
время года, и зачистка баков.
Сухие вещества свекловичной мелассы, по данным П. М. Силина, слагаются из следующих компонентов (в среднем мае. %): сахарозы 60,0; безазотистых органических веществ 16,7; азотистых веществ 14,8 и минеральных веществ (золы) 8,5.
В свеклосахарном производстве ведут учет только сахарозы — основного продукта, в соответствии с чем другие сахара относят к группе безазотистых органических веществ. В спиртовом производстве учитывают все сахара, полностью или частично сбраживаемые дрожжами на спирт, и сумму сахаров называют сбраживаемыми сахарами.
Сахароза не сбраживаемые сахара. Количество сахарозы в свекловичной мелассе колеблется от 48 до 62 % к ее массе и сильно зависит от состава несахаров свеклы. Обычно принято считать, что меласса должна быть раствором, насыщенным сахарозой, однако практически она представляет собой несколько перенасыщенный раствор, поскольку в производстве кристаллизация ограничена временем. Кроме того, на содержание сахарозы существенно влияют исходная плотность сиропа и конечная температура кристаллизации: чем выше плотность и ниже температура (в допустимых пределах), тем меньше в мелассе остается сахара.
Инвертированный
сахар — это смесь
Количество инвертированного сахара — 0,4... 1,5 % к массе мелассы. При переработке долголежалой и порченой свеклы, а также при хранении мелассы в неблагоприятных условиях содержание в ней инвертированного сахара может резко возрасти.
Из трисахаридов в мелассе присутствуют раффиноза (0,5...2,0 %), кестоза и неокестоза (0,5... 1,6 %), плантеоза (0,01 %). Раффиноза (мелитриоза, госсипоза) состоит из остатков молекул фруктозы, глюкозы и галактозы; кестоза и изокесто- за — из двух остатков молекул фруктозы и одного остатка молекулы глюкозы. Раффиноза переходит в мелассу из свеклы. Кестоза и неокестоза в свекле не содержатся, и появление их, как и других олигосахаридов в мелассе, по-видимому, объясняется деятельностью микроорганизмов в процессе сахарного производства. Тетрасахариды представлены стахиозой (0,02 %).
Из свеклы в мелассу переходит небольшое количество пектиновых веществ и сопутствующие им арабана и галактана.
На спирт полностью сбраживаются сахароза, инвертированный сахар и манноза. Раффиноза под действием р-фруктофуранозидазы (сахаразы, инвертазы) дрожжей расщепляется на фруктозу и дисахарид — мелибиозу. Так как в спиртовых дрожжах рас Я и В нет а-галактозидазы (мелибиазы), то раффиноза сбраживается ими только на 34 %. Однако в новых гибридных расах дрожжей (Г-67, Г-73 и др.) этот фермент присутствует, поэтому раффиноза почти полностью сбраживается. Содержание других Сахаров обычно невелико, они или частично сбраживаются, или (как пентозы) не сбраживаются, и потому к сбраживаемым сахарам обычно относят сахарозу, инвертированный сахар и Уз раффинозы, при этом количество двух последних Сахаров пересчитывают на сахарозу.
Безазотистые органические вещества. Как указывалось ранее, к безазотистым органическим веществам в сахарном производстве относят все сахара мелассы, за исключением сахарозы, продукты химической и термической деструкции Сахаров и органические кислоты.
Инвертированный сахар, особенно фруктоза, в щелочных растворах сахарного производства при нагревании быстро разлагается. Вначале вследствие кето-енольной таутомерии происходят взаимные превращения глюкозы и фруктозы и образование новых моноз, например маннозы и псикозы. При разложении моносахаридов появляются нелетучие окрашенные кислоты — глюциновая, апоглюциновая, сахарумовая, меляссиновая и более высокомолекулярные гуминовые кислоты, немного молочной и летучих кислот — муравьиной и уксусной.
Карамели — собирательное название сложной смеси продуктов, образующихся при термическом разложении сахарозы и моносахаридов. В состав карамелей входят ангидриды Сахаров, темноокрашенные и другие малоизученные соединения.
Меланоидины — также собирательное название не менее сложной смеси продуктов, получающихся при химическом взаимодействии редуцирующих Сахаров с аминокислотами. Кроме нелетучих окрашенных соединений, содержащих небольшое количество азота, присутствуют алифатические альдегиды, метилглиоксаль, диацетил, ацетоин и др. Р. Тресселу удалось обнаружить в мелассе около 40 летучих соединений меланоиди- новой реакции, в основном производных пиразина и фурана — от 7-10—6 до 0,01 %.
Окраска мелассы обусловлена красящими веществами, образующимися при меланоидиновой реакции и щелочном разложении моноз. Они имеют частицы размером от 0,7 до 4,2 нм, лежащим на границе между молекулярной и коллоидной дисперсностью. Большая часть красящих веществ образует истинные водные растворы.
Для всех красящих веществ характерна зависимость интенсивности окраски от величины активной концентрации водородных ионов: с понижением рН она уменьшается, с повышением увеличивается, что, возможно, связано с изменением диссоциации хромофорных групп. Во многих красящих веществах присутствуют карбонильные и карбоксильные группы, благодаря чему они способны соответственно редуцировать окисленные соединения и проявлйть кислотные свойства. Некоторые функциональные группы могут обратимо окисляться, восстанавливаться и влиять на окислительно-восстановительный потенциал растворов.
Цветность мелассы выражают в миллилитрах 0,1 н. раствора йода, который надо добавить к 94 мл дистиллированной воды, чтобы получить такую же интенсивность окраски, как у 2%-ного раствора мелассы. Цветность колеблется в широких пределах — от 1,2 до 4,6, чаще 1,5...2 мл 0,1 н. раствора.
В мелассе 4...6 % веществ находятся в коллоидном состоянии со средним радиусом частиц от 45 до 80 нм. Различают необратимые и обратимые коллоиды. Первые после осаждения спиртом или спирто-эфирной смесью вновь не растворяются в воде, ок- рашены в интенсивный темно-коричневый цвет (обусловливают до 85 % цветности мелассы) и содержат около 9 % азота; вторые растворяются в воде, окрашены менее интенсивно, беднее азотом (около 4 %). Основная масса коллоидов — обратимые.
Органическая часть, составляющая 90...95 % массы коллоидов, мало изучена. В обратимых коллоидах выявлено присутствие приблизительно 25 % арабана и некоторого количества гексоза- нов. Значительная доля в составе коллоидов, особенно необратимых, по-видимому, приходится на высокомолекулярные окрашенные кислоты.
Коллоиды, содержащие окрашенные продукты щелочного разложения моносахаридов, имеют отрицательный электрокинетический потенциал, поэтому коагулируют в кислой среде при следующих оптимальных условиях: рН 3,2, концентрация сухих веществ мелассы 20...30 %, температура 80 °С. Коллоиды с окрашенными продуктами меланоидиновой реакции заряжены положительно и коагулируют в щелочной среде при рН 8 и выше.
Органические кислоты свеклы, образующие с гид- роксвдом кальция нерастворимые соли (щавелевая, лимонная, оксилимонная и винная), в основном удаляются из диффузионного сока в процессе дефекации. В мелассу переходят главным образом кислоты, не осаждаемые известью, — глутаровая, малоновая, адипиновая, янтарная, трикарбаллиловая, аконитовая, гликолевая, молочная, глиоксиловая и яблочная. Из нелетучих жирных кислот обнаружены следы капроновой, каприловой, каприновой, лауриновой, миристиновой и пальмитиновой. Из летучих кислот присутствуют муравьиная (0,1....1,2 %), уксусная (0,6...1,3 %), пропионовая (0,02...0,3 %), н-масляная (до 0,6 %), н-валериановая (до 0,2 %) и следы около 20 кислот ароматического ряда. Уксусная кислота образуется в процессе дефекации при щелочном разложении пектиновых веществ и моносахаридов. Но большая часть уксусной кислоты, как и других летучих кислот и молочной кислоты, появляется в результате жизнедеятельности микроорганизмов. Практически все летучие и нелетучие кислоты находятся в мелассе в виде солей калия и кальция.
Азотистые вещества. Содержание этих веществ в мелассе составляет от 5 до 20 % от ее массы. Оно существенно зависит от количества внесенных под свеклу азотистых удобрений, выпавших осадков, температуры в период вегетации, а также продолжительности хранения свеклы: повышается с увеличением дозы удобрений и уменьшается с возрастанием количества осадков, понижением температуры и с увеличением продолжительности хранения свеклы.
Аминокислоты (табл. 2) переходят в мелассу из свеклы только на 50...60 %. у-Аминомасляная кислота не содержится в свекле и образуется в процессе ее переработки из глутаминовой кислоты при декарбоксилировании. Глутаминовая кислота легко отщепляет воду, превращаясь в циклическую пирролидинкарбоновую кислоту, в виде которой она в основном (75 %) и находится в мелассе.
2. Аминокислотный состав свекловичной мелассы
Аминокислота J | Содержание, % к массе мелассы | | Аминокислота | Содержание, % к массе мелассы |
Лейцин + иэолей- | 0,6...2,9 | Треонин + глицин | 0,2...0,9 |
цин | |||
Фенил аланин | Следы | Глутаминовая | 0,6...1,8 |
кислота | |||
Валин + метио- | 0,4...1,3 | Сернн | 0,7...2,5 |
нин + триптофан | |||
у-Аминомасляная | 0,7...1,8 | Аспарагиновая | 0,2...0,5 |
кислота | кислота | ||
Тирозин | 0,8...0,9 | Аргинин + гисти- | Следы—0,7 |
дин + лизин | |||
Пролин | Следы | Цистин | Следы |
Аланин | 0,5...2,3 |