Область применения техники СВЧ

Автор работы: Анастасия Еремина, 01 Сентября 2010 в 16:40, дипломная работа

Краткое описание

Рассчитан и спроектирован автогенераторный клистрон с электронным КПД в выходном зазоре равным =0.62 и общим электронным КПД=0.65. Для двухрезонаторного клистрона с тремя зазорами это является хорошим результатом. Это на 30-35% больше, чем у приборов выпускаемых промышленностью. Вместе с тем еще остаются возможности для последующего повышения КПД.

Содержимое работы - 1 файл

СВЧ.doc

— 701.50 Кб (Скачать файл)

Повышение относительного значения первой гармоники электрического тока I1max/I0   при времени пролета равным или большем половины периода отмечено в работе [3]. Когда время пролета через зазор равно или больше половины периода, скоростная модуляция становится несинусоидальной.

После упомянутых работ Гебауэра наиболее полное и систематическое исследование процессов при взаимодействии электронов с полем широкого зазора было дано Солимаром [4]. При этом он использовал аналитическую теорию, которая может давать и неточные результаты после перегона. Из многочисленных кривых приведенных Солимаром можно отметить следующие результаты, в которых значение I1max/I0  превышает соответствующие значения при узких зазорах.

при  к=10  D=1800  a=0.9  bрZ=300  I1max/I0 =1.3

при к=10  D=1800  a=1.5   bрZ=200  I1max/I0 =1.4

при  к=5   D=1800   a=1.5   bрZ=40-900  I1max/I0 =1.4

при к=10  D=2880   a=1.5   bрZ=70-800  I1max/I0 =1.45

при  к=20 D=5400   a=0.9   bрZ=70-900  I1max/I0 =1.3

при к=20  D=5400   a=1.5   bрZ=360  I1max/I0 =1.36

где к=w/wp,

wp - электронно-плазменная частота

D=wd/vo - угол пролета, где

d - ширина зазора bр=wp /vo

Z -текущая координата 

a=v1/vo

На рис.2.4 приведены  некоторые кривые из работ Л.Солимара, по которым можно проследить изменение I1max/I0  при изменении к,D,a, bр,Z.

Результаты исследований по рассматриваемой теме приводит в  своей книге А.З.Хайков [5]. Он пишет, что используя достаточно протяженный  зазор входного резонатора и большое напряжение на нем, можно добиться увеличения I1max/I0  по сравнению со значением, характерным для узких зазоров. Практически такую возможность повышения КПД целесообразно использовать в двухрезонаторных клистронах-автогенераторах, так как в усилителе на двухрезонаторном клистроне подобный режим привел бы наряду с ростом КПД к резкому уменьшению усиления . Графики на рис.2.5 показывают как изменяется величина максимальной относительной амплитуды первой гармоники тока I1max/I0  и расстояние между центрами зазоров L12  в зависимости от угла пролета во входном зазоре q1.

Первые расчеты  для широких зазоров на основе дискретной модели электронного потока [6] показали лишь небольшое увеличение относительной величины тока первой гармоники I1max/I0 =1.26. Однако в последующие расчеты на основе дискретной модели подтвердили возможность увеличения I1max/I0  до 1.5 [7]. Кроме того было показано, что влияние пространственного заряда может улучшить качество группирования.  Исследования, проводимые на кафедре ЭП, показали, что в сравнительно простом по конструкции клистроне можно получить КПД не менее 50% [8].

Среди работ  посвященных исследованию электронных  процессов в широком зазоре можно отметить статью А.И.Костиенко и Ю.А.Пирогова, опубликованную в 1962г [9], хотя авторы этой статьи решают поставленный вопрос с иных позиций. Рассмотрена возможность взаимодействия электронного потока с электромагнитным полем СВЧ волны в широком плоском зазоре с эффективностью не хуже чем в узком зазоре. Взаимодействие происходит в поле волны H11 (расстояние между сетками сравнимо с длиной волны). При достаточно большой плотности входящего в зазор тока в промежутке между сетками может возникнуть неотрицательный минимум потенциала, а следовательно, распределение статического потенциала вдоль зазора будет нелинейным (рассмотрен случай с квадратным распределением). Модуляция потока электронов по скорости будет близка к синусоидальной. Изменение скоростей электронов под действием поля СВЧ тем больше, чем больше нелинейность распределения. Мощность взаимодействия потока электронов с электромагнитным полем СВЧ может принимать как положительные так и отрицательные значения, т.е. такая система может быть использована для генерирования, усиления и детектирования колебаний  
 
 
 
 
 
 

N 1 2 3 4
k 10 20 30 10
a 1.5 0.9 1.5 1.5
D 2880 5400 5400 1800
 
 
 
 
 

рис.2.4.   Зависимости первой гармоники электронного тока от bрZ при различных парметрах. 
 
 
 
 
 
 
 
 
 
 

   
 

Рис.2.5. Зависимость  конвекционного тока и оптимального расстояния от угла пролета 
 
 
 

СВЧ коротковолнового диапазона. Кроме того авторы работы делают вывод, что при использовании широких зазоров не требуется высокое ускоряющее напряжение. О реализации рассмотренного механизма не сообщалось.

С 1992г на кафедре  ЭП проводились работы по двум грантам  по созданию двухзазорного однорезонаторного клистрона с широким входным зазором и высоким КПД. Исследования электронных процессов на основе двухмерной многослойной модели и холодные измерения резонатора показали возможность осуществления двухзазорного однорезонаторного клистрона с электронным КПД 56%, общим КПД 50% при углах пролета во входном зазоре около 3p/2 в области II (рис.2.1.). На базе приборов, выпускаемых промышленностью, спроектированы два автогенераторных однорезонаторных клистрона мощностью 2-2.5 кВт при ускоряющем напряжении 4 кВ на частоте 2450 МГц для технологических целей [10] На рис.2.6 приведены зависимости максимальных относительных амплитуд первой гармоники тока от угла пролета во входном зазоре для различных x1 , полученные при расчете электронных процессов.

Дальнейшие исследования проводились при q=3p. На рис.2.7  приведены зависимости из работы [11], полученные для равномерного поля. Из рис.2.7 видно, что максимальный КПД получаемый при равномерном поле составляет 45%. В работах [10,11] все расчеты по исследованию электронных процессов проводились с использованием ЭВМ. Программа расчета основана на методе конечных разностей для расчета электрических полей и модели потока из деформирующихся элементов. Подробно эта программа описана в работе [11].

При расчете  электронных процессов в реальных полях, проводимых на кафедре электронных приборов, было обнаружено значительное влияние структуры поля на эффективность электронных процессов. Эффективность процессов получалась выше при неравномерных полях.

Процессы при  неравномерном поле практически не изучались и весьма сложны. Проведем качественные пояснения, объясняющие явления. Прежде всего надо отметить, что в соответствии с формулой  
 
 

Рис.2.6. Завмсимость  максимума конвекционного тока от угла пролета при различных амплитудах напряжения.

 

Рис.2.7.  Зависимости I1max/I0 , L12 , Lopt , L' , hе  от  ширины зазора d1

 

 

вблизи эффективного угла пролета q=2.8p Ge=0 и коэффициент электронного взаимодействия М проходит через максимум (по абсолютному значению). Поэтому можно получить достаточно большие значения n.

Для пояснения  процесса скоростной модуляции рассмотрим случай с углом пролета 3p. Если электрон проходит через центр зазора в момент максимального напряжения, то он становится замедленным  так как он ускоряется в течении одного полупериода, а тормозится в течении двух.

Для получения  эффективного группирования важно  не только иметь достаточно большие  значения n , но и получить распределение скоростей, близкое к пилообразным. При таком распределении область группирования увеличивается. Чтобы получить форму кривой скоростной модуляции близкую к пилообразной, надо увеличить значение vmax и уменьшить значение vmin  см.рис 2.8. Это можно реализовать, если поле в начале и в конце пролета через промежуток сделать сильнее (рис.2.9 ). Различные кривые распределения напряжения в высокочастотном зазоре представлены на рис.2.10. Кривая 1 соответствует равномерному полю. Для других двух кривых эффективность группирования возрастает. Обратимся теперь к различным формам резонаторов, реализующих рассмотренное распределение напряжений. На рис.2.11 представлены различные конструкции резонаторов и соответствующие им распределение полей. Кривые на рис.2.11.б,в,г приведены без учета провисания поля в пролетном канале. Кривая 1 на рис.2.11.а соответствует полю по оси пролетного канала, а кривая 2 - у края пролетного канала. Более сильное поле слева на рис.2.11.в получено за счет небольшого выступа пролетной трубы. Кольцо на рис.2.11.г немного ослабляет поле в середине промежутка, кроме того, оно увеличивает емкость, что необходимо в приборе с одним двухзазорным резонатором для получения заданного отношения напряжений. 

Анализ показывает, что достижение максимального I1max/I0  желательно при меньших значениях d1, особенно при d1, меньших того значения, при котором h1 =0.

Рис.2.8. Диаграмма  изменения скоростей электронов при синусоидальной и пилообразной модуляции 
 

а) б) в)

Рис.2.9. Картина распределения напряженности электрического поля во времени при 3p для:

а) замедленного электрона в равномерном поле

б) замедленного электрона в неравномерном поле

в) ускоренного  электрона в неравномерном поле 

Рис.2.10. Кривые распределения напряжения в высокочастотном зазоре.

 

2.2. Взаимодействие  сгруппированного  электронного потока  с полем выходного зазора .

       В первой части данной главы были рассмотрены  проблемы группирования электронного потока с входными зазорами. Не менее важной задачей, для получения высокого КПД, является подбор оптимальных параметров для выходного резонатора. Для предварительных оценок качества группирования Мираном был предложен показатель качества.

       

,

где  I1/I0 -  относительная амплитуда первой гармоники тока

        vmin/v0 - относительная скорость самого медленного электрона

       Эти проблемы были исследованы на кафедре  ЭП [12]. В этой работе даются графики, изображенные на рис.2.12,2.13. Эти зависимости  были исследованы для реального сгустка электронов, имеющего I1max/I0=1.4 при xn-1 =0.4. Расчеты проводились по пятислойной одномерной модели потока из деформирующихся элементов по программе описанной в [13,14]. На рис.2.12 показаны зависимости электронного КПД hе от амплитуды напряжения на выходном зазоре xn при различных углах пролета q. Кривая 1 соединяет точки, в которых электроны начинают поворачивать назад. Кривая 2 соединяет точки, соответствующие выбросу части электронов из зазора. Максимум КПД достигается при больших значениях xn (кривая 3) при этом от 4 до 6% электронов возвращается назад. Кривая 4 соединяет точки, в которых падает не более чем на 0.5%, по сравнению с максимальным значением. При этом количество выбрасываемых электронов уменьшается примерно на 2%. При xn>1.35 КПД практически не увеличивается, даже при больших    q.

Информация о работе Область применения техники СВЧ