Статистическое изучение взаимосвязи

Автор работы: Пользователь скрыл имя, 20 Февраля 2013 в 10:22, реферат

Краткое описание

Изучение статистических закономерностей – важнейшая познавательная задача статистики, которую она решает с помощью особых методов, видоизменяющихся в зависимости от характера исходной информации и целей познания. Знание характера и силы связей позволяет управлять социально-экономическими процессами и предсказать их развитие. Особую актуальность это приобретает в условиях развивающейся рыночной экономики. Изучение механизма рыночных связей, взаимодействия спроса и предложения, влияния объема и структуры товарооборота на объем и состав производства продукции, формирования товарных запасов, издержек производства, прибыли и других качественных показателей имеет первостепенное значение для прогнозирования конъюнктуры рынка, региональной организации производственных и торговых процессов, успешного ведения бизнеса.

Содержание работы

Введение

1. «Причинно-следственные отношения между общественными явлениями и виды связей»

2. «Простейшие методы изучения стохастических связей»

3. «Статистическое моделирование связи методом корреляционного и регрессионного анализа»

4. «Непараметрические методы»

Заключение

Литература

Содержимое работы - 1 файл

рефре3 тат.docx

— 32.70 Кб (Скачать файл)

 
Представление связи линейной функцией там, где фактически имеются нелинейные соотношения, вызовет ошибки аппроксимации  и в конечном счете упрощенные или даже ложные представления о сущности изучаемого явления. 
4. Непараметрические методы 
Важной задачей является разработка методики статистической оценки социальных явлений, которая осложняется тем, что многие из них не имеют количественной оценки, а изложенные выше методы применимы только к количественным признакам, так как требуют вычисления таких параметров распределения, как средние величины, дисперсии, отклонения. Потому они и называются параметрическими. 
 
Вместе с тем в статистике применяются также непараметрические методы, с помощью которых устанавливается связь между качественными (атрибутивными признаками). Сфера их применения шире, чем параметрических, поскольку не требуется соблюдения условия нормальности распределения зависимой переменной, однако при этом снижается глубина исследования связей. При изучении зависимости между качественными признаками не ставится задача представления ее уравнением. Здесь речь идет только об установлении наличия связи и измерении ее тесноты. 
 
В практике статистических исследований приходится иногда анализировать связи между альтернативными признаками, представленными только группами с противоположными (взаимоисключающими) характеристиками. Тесноту связи в этом случае можно оценить, вычислив коэффициенты ассоциации или контингенции. 
 
Для расчета коэффициента ассоциации или контингенции строится четырехклеточная корреляционная таблица, которая носит название таблицы «четырех полей» и имеет следующий вид:

 
a

 
b

 
a+b

 
c

 
d

 
c+d

 
a+c

 
b+d

 
a+b+c+d


 
Применительно к таблице «четырех полей»с частотами a, b, c и d коэффициент взаимосвязей явлений определяются по формулам: 
 
коэффициент ассоциации 
ka=(ad-bc) / (ad+bc); 
коэффициент контингенции 
kk=(ad-bc) / √(a+b)(c+d)(a+c)(b+d). 
Коэффициент контингенции всегда меньше коэффициента ассоциации. Коэффициент ассоциации изменяется от -1 до +1; чем ближе к +1 или -1, тем сильнее связаны между собой изучаемые признаки. 
 
Если kне менее 0,3, или kне менее 0,5, то это свидетельствует о наличии связи между качественными признаками. 
Заключение 
Изучив данную тему, в заключении можно сделать следующие выводы: 
 
1. Исследование объективно существующих связей между явлениями – важнейшая задача общей теории статистики. Формы проявления взаимосвязей явлений и процессов весьма разнообразны. Из них в самом общем виде выделяют функциональную (полную) и стохастическую (неполную) связи, корреляционная связь является частным случаем стохастической связи. По направлению связи бывают прямыми (положительными) и обратными (отрицательными). По своей аналитической форме связи могут быть линейными и нелинейными. По количеству взаимодействующих факторов различают связи однофакторные (их обычно называют парными) и многофакторные. По силе различаются слабые и сильные связи. 
 
2. Для исследования стохастических связей широко используется метод сопоставления двух параллельных прямых, метод аналитических группировок, графический метод, корреляционный анализ, регрессионный анализ и некоторые непараметрические методы. 
 
3. Знание характера и силы связей позволяет управлять социально-экономическими процессами и предсказать их развитие, что очень важно в условиях развивающейся рыночной экономики. 
Литература 

  1.  
    Воронин В.Ф., Жильцова Ю.В. Статистика: Учеб. пособие для вузов. – М.: Экономистъ, 2004. – 301 с.
  2.  
    Голуб Л.А. Социально-экономическая статистика: Учеб. пособие. – М.: Владос, 2001. – 272 с.
  3.  
    Гусаров В.М. Статистика: Учеб. пособие для вузов. – М.: ЮНИТИ-ДАНА, 2001. – 463 с.
  4.  
    Гусаров В.М. Теория статистики: Учебн. пособие для вузов. – М.: Аудит, ЮНИТИ, 1998. – 247 с.
  5.  
    Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учеб для вузов. – М.: Финансы и статистика, 1995.
  6.  
    Статистика: Курс лекций для вузов / под ред. В.Г. Ионина. – 2-е изд., перераб. и доп. - М.: ИНФРА-М, 2001. – 384 с.
  7.  
    Теория статистики: Учебник /под ред. Р.А. Шмойловой. – 4-е изд., перераб. и доп. – М.: Финансы и статистика, 2004. – 656 с.: ил.

Информация о работе Статистическое изучение взаимосвязи