Автор работы: Пользователь скрыл имя, 11 Ноября 2011 в 23:20, шпаргалка
Темы: 1. Понятие и предмет статистики, 2. Категории статистики, 3. Статистическая методология, 4. Понятие статистического наблюдения, 4. Понятие статистического наблюдения, 5. Методология статистического наблюдения, 6. Формы статистического наблюдения, 7. Способы статистического наблюдения, 8. Виды статистического наблюдения, 9. Точность статистического наблюдения, 10. Понятие и виды сводки, 11. Понятие и виды группировок, 12. Способы построения группировок, 13. Вторичная группировка, 14. Понятие и виды рядов распределения, 15. Графическое изображение рядов распределение, 16. Понятие и элементы статистической таблицы, 17. Виды таблиц по характеру подлежащего., 18. Виды таблиц по разработке сказуемого., 19. Поня атистическом графике, 20. Классификация видов графиков, 21. Понятие о статистическом показателе, 22. Абсолютные показатели, 23. Относительные показатели, 24. Сущность средних показателей, 25. Исходное соотношение средней, 26. Средние арифметические величины, 28. Средние гармонические величины, 29. Другие виды средних величин, 30. Структурные средние, 31. Понятие и меры вариации, 32. Свойства дисперсии, 33. Виды дисперсий и правило их сложения, 34. Вариация альтернативного признака, 35. Закономерность распределения. Изучение формы распределения, 36. Закон нормального распределения, 37. Структурные характеристики рядов распределения, 38. Понятие и классификация рядов динамики, 39. Показатели изменения уровней ряда, 40. Средние характеристики рядов динамики,41. Компоненты ряда динамики, 42. Понятие экономических индексов и их классификация, 43. Индивидуальные и сводные индексы, 44. Агрегатные индексы, 45. Средние индексы, 46. Базы и веса индексов, 47. Структурные индексы, 48. Пространственно-территориальные индексы, 49. Индексы Ласпейреса, Пааше и Фишера, 50. Индекс потребительских цен. Индекс-дефлятор. Фондовые индексы, 51. Понятие выборочного наблюдения. Способы формирования выборочной совокупности, 52. Основные характеристики параметров генеральной и выборочной совокупности, 53. Определение необходимого объема выборки, 54. Оценка результатов выборочного наблюдения и их распространение на генеральную совокупность, 56. Виды статистических связей, 57. Методы выявления статистических связей, 58. Парная регрессия, 59. Метод наименьших квадратов, 60. Множественная регрессия.
Таким образом все значения признака можно разделить на какую-то постоянную величину, затем определить среднее квабратическое отклонение и умножить его на эту постоянную величину
40 Средний квадрат отклонений от любой величины А в той или иной степени отличающейся от средней арифметической всегда будет больше среднего квадрата отклонений, исчисленного от средней арифметической
При этом средний квадрат отклонений будет больше на определенную величину (на квадрат разности средней и условно взятой величины)
50 Дисперсия имеет свойство минимальности; если А=0, то дисперсия вычисляется по формуле:
Между средним линейным отклонением и средним квадратическим отклонением существует примерное соотношение. в том случае, если фактическое распределение близко к нормальному распределению. Как правило
В условиях
нормального распределения
Правило трех
1) В пределах располагается 68,3% количества наблюдений
2) В пределах находится 95,4% количества наблюдений
3) В пределах находится 99,7% количества наблюдений
Отклонения считается максимально возможными.
33. Виды дисперсий и правило их сложения
Показатели вариации могут быть использованы не только в анализе изменчивости изучаемого признака, но и для оценки степени воздействия одного признака на вариацию другого признака, т.е. в анализе взаимосвязей между показателями.
При проведении такого анализа совокупность должна представлять собой множество единиц, каждая из которых характеризуется двумя признаками – факторным и результативным.
Для выявления взаимосвязи исходная совокупность делится на две или более групп по факторному признаку. Выводы о степени взаимосвязи базируются на анализе вариации результативного признака. При этом применяется правило сложения дисперсий:
- общая дисперсия;
- средняя из внутригрупповых дисперсий;
- межгрупповая дисперсия.
Общая дисперсия измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию.
Межгрупповая дисперсия отражает ту часть вариации результативного признака, которая обусловлена воздействием факторного признака. Это воздействие проявляется в отклонении групповых средних от общей средней:
где - среднее значение результативного признака по i-ой группе;
- общая средняя по совокупности в целом;
- объем (численность) i-ой группы.
Если факторный признак, по которому производится группировка, не оказывает никакого влияния на результативный признак, то групповые средние будут равны между собой и совпадут с общей средней. В этом случае межгрупповая средняя будет равна нулю.
Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и независящую от признака фактора, положенного в основание группировки.
Средняя из внутригрупповых дисперсий отражает ту часть вариации результативного признака, которая обусловлена действием всех прочих неучтенных факторов, кроме фактора, по которому осуществлялась группировка:
где - дисперсия результативного признака в i-ой группе;
- объем (численность) i-ой группы;
Эмпирический коэффициент детерминации представляет собой долю межгрупповой дисперсии в общей дисперсии.
Теснота
связи между факторным и
Данный
показатель может принимать значения
от 0 до 1. Чем ближе к 1 будет его
величина, тем сильнее взаимосвязь
между рассматриваемыми признаками.
34. Вариация альтернативного признака
Среди
множества варьирующих
Дисперсия
альтернативного признака широко применяется
в выборочном обследовании.
35. Закономерность распределения. Изучение формы распределения
Закономерностями распределения называются закономерности изменения частот в вариационных рядах.
Основная
задача анализа вариационных рядов
заключается в выявлении
Если
увеличить объем совокупности и
уменьшить интервал в группах, то
графическое изображение
Кривая распределения – графическое изображение в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариант.
Теоретическая кривая распределения – кривая, выражающая общую закономерность данного типа распределения в чистом виде, исключающего влияние случайных для него факторов.
Выяснение общего характера распределения предполагает оценку его однородности, а также расчет показателей асимметрии и эксцесса.
При сравнительном изучении асимметрии нескольких распределений с разными единицами измерения вычисляется относительный показатель асимметрии:
Его величина может быть положительной (для правосторонней асимметрии) и отрицательной (для левосторонней асимметрии).
Применение данного показателя дает возможность определить не только величину асимметрии, но и проверить ее наличие в генеральной совокупности. Принято считать, что асимметрия выше 0,5 (независимо от знака) считается значительной. Если асимметрия меньше 0,25, она считается незначительной.
Наличие
асимметрии в генеральной совокупности
проверяется с помощью
В случае, если , асимметрия считается существенной и распределение признака в генеральной совокупности несимметрично и неслучайно, а закономерно.
Для симметричных распределений может быть рассчитан показатель эксцесса, который показывает, насколько резкий скачок имеет изучаемое явление. Показатель эксцесса определяется на основе центрального момента четвертого порядка по формуле:
Если показатель эксцесса больше нуля, то распределение островершинное и скачок считается значительным, если коэффициент эксцесса меньше нуля, то распределение считается плосковершинным и скачок считается незначительным. Среднеквадратическая ошибка эксцесса показывает, насколько существенен скачок в явлении и рассчитывается по формуле:
36. Закон нормального распределения
- ордината прямой нормального распределения
- стандартизированная (
Свойства кривой нормального распределения
10 - функция нормального распределения четная
20 При функция имеет бесконечно малые значения
30 Функция имеет мах при модальное значение функция достигает также при или при . При этом мах значение функции будет составлять
40 При функция дает точку перегиба
50 Если случайная величина представляет сумму двух независимых случайных величин, каждая из которых следует нормальному закону, то она тоже следует нормальному закону.
При нормальном
распределении коэффициент
Суть
закона нормального распределения:
значение исследуемой непрерывной случайной
величины формируется под воздействием
очень большого числа независимых случайных
факторов, причем сила воздействия каждого
отдельного фактора мала и не может иметь
превосходство.
37. Структурные характеристики рядов распределения
К структурным характеристикам ряда распределения относятся мода, медиана, квартили, децили и перцентили.
Квартили представляют собой значение признака, делящее ранжированную совокупность на четыре равновеликие части. Различают квартиль первого порядка (нижний квартиль) и квартиль третьего порядка (верхний квартиль). Каждый из них отсекает соответственно ¼ и ¾ совокупности. Для расчета квартилей используются следующие формулы:
- нижняя граница интервала, содержащего нижний квартиль. Интервал определяется по сумме накопленных частот, превышающих 25 %
- нижняя граница интервала,
содержащего верхний квартиль. Интервал
определяется по сумме
- шаг интервала
- накопленные частоты интервала,
- накопленные частоты интервала,
- частота интервала,
- частота интервала,
Децили – варианты, делящие ранжированный ряд на десять равных частей. Первый дециль отсекает 1/10 часть совокупности, а девятый дециль отсекает 9/10 частей. Рассчитываются децили по аналогичным формулам:
Перцентили
– варианты, которые делят ранжированную
совокупность на 100 частей.
38. Понятие и классификация рядов динамики
Ряд динамики – последовательность изменяющихся во времени значений статистического показателя, распложенного в хронологическом порядке.
Составными элементами ряда динамики являются показатели уровней ряда (статистический показатель, характеризующий данное явление за период или на момент времени) и периоды времени (годы, кварталы, сутки) или моменты (даты) времени (периоды времени, которым относятся статистические данные об изучаемом явлении).
Уровни ряда обычно обозначаются через «у», моменты или периоды времени, к которым относятся уровни – через «t».