Автор работы: Пользователь скрыл имя, 26 Декабря 2011 в 16:50, контрольная работа
ПОНЯТИЯ И КЛАССИИКАЦИЯ РЯДОВ ДИНАМИКИ
Понятие о статистических рядах динамики .
Если рассматривать динамические ряды месячных уровней производства молока , мяса , ряды объема продаж разных видов обуви или одежды , ряды заболеваемости населения , выявляются регулярно повторяющиеся из года в год сезонные колебания уровней . В силу солнечно – земных связей частота полярных сияний , интенсивность гроз , те же изменения урожайности отдельных сельскохозяйственных культур и ряд других процессов имеют циклическую 10 – 11 летнюю колеблемость . Колебания числа рождений , связанные с потерями в войне , повторяются с угасающей амплитудой через поколения , то есть через 20 – 25 лет.
Тенденция динамики связана с действием долговременно существующих факторов , причин и условий развития , хотя , конечно , после какого – то периода условия могут измениться и породить уже другую тенденцию развития изучаемого объекта . Колебания же , напротив , связаны с действиями краткосрочных или циклических факторов , влияющих на отдельные уровни динамического ряда , и отклоняющих уровни тенденции то в одном , то в другом направлении .
Например , тенденция динамики урожайности связана с прогрессом агротехники , с укреплением экономики данной совокупности хозяйств совершенствованием организации производства . Колеблемость урожайности вызвана чередованием благоприятных по погоде и неблагоприятных лет , циклами солнечной активности и т. д.
При
статистическом изучении динамики необходимо
четко разделить два ее основных
элемента – тенденцию и колеблемость
, чтобы дать каждому из них количественную
характеристику с помощью специальных
показателей . Смешение тенденции и
колеблемости ведет к неверным выводам
о динамике .
Структура ряда динамики. Задачи, решаемые с помощью рядов динамики. Взаимосвязанные ряды динамики .
Всякий ряд динамики теоретически может быть представлен в виде составляющих :
1) тренд – основная тенденция развития динамического ряда ( к увеличению или снижению его уровней) ;
2) циклические (периодические колебания , в том числе сезонные);
3) случайные
колебания.
С
помощью рядов динамики изучение
закономерностей развития
1) Характеристика уровней развития изучаемых явлений во времени ;
2) Измерение динамики изучаемых явлений посредством системы статистических показателей ;
3) Выявление и количественная оценка основной тенденции развития (тренда) ;
4) Изучение периодических колебаний ;
5) Экстраполяция
и прогнозирование .
Под
взаимосвязанными рядами динамики понимают
такие , в которых уровни одного ряда
в какой – то степени определяют
уровни другого . Например , ряд , отражающий
внесение удобрений на 1 га , связан
с временным рядом урожайности
, ряд уровней средней выработки
связан с рядом динамики средней
заработной платы , ряд среднегодового
поголовья молочного стада
Методы анализа основной тенденции (тренда) в рядах динамики.
Одна из важнейших задач статистики- определение в рядах динамики общей тенденции развития.
Основной тенденцией развития называется плавное и устойчивое изменение уровня во времени, свободное от случайных колебаний. Задача состоит в выявлении общей тенденции в изменении уровней ряда, освобожденной от действия различных факторов.
Изучение тренда включает два основных этапа:
· ряд динамики проверяется на наличие тренда;
· производится выравнивание временного ряда и непосредственно выделение тренда с экстраполяцией полученных результатов.
С этой целью ряды динамики подвергаются обработке методами укрупнение интервалов, скользящей средней и аналитического выравнивания:
1. Метод укрупнения интервалов.
Одним из наиболее элементарных способов изучения общей тенденции в ряду динамики является укрупнение интервалов. Этот способ основан на укрупнении периодов, к которым относятся уровни ряда динамики. Например, преобразование месячных периодов в квартальные, квартальных в годовые и т.д.
2. Метод скользящей средней.
Выявление общей тенденции ряда динамики можно произвести путем сглаживания ряда динамики с помощью скользящей средней.
Скользящая средняя-
подвижная динамическая средняя, которая
рассчитывается по ряду при последовательном
передвижении на один интервал, то есть
сначала вычисляют средний
При этом посредством осреднения эмпирических данных индивидуальные колебания погашаются, и общая тенденция развития явления выражается в виде некоторой плавной линии (теоретические уровни). И так, суть метода заключается в замене абсолютных данных средними арифметическими за определенные периоды.
Скользящая средняя обладает достаточной гибкостью, но недостатком метода является укорачивание сглаженного ряда по сравнению с фактическим, что ведет к потери информации. Кроме того, скользящая средняя не дает аналитического выражения тренда.
Период скользящей может быть четным и нечетным. Практически удобнее использовать нечетный период, так как в этом случае скользящая средняя будет отнесена к середине периода скольжения. Скользящие средние с продолжительностью периода, равной 3, следующие:
; ; и т.д.
Полученные средние записываются к соответствующему срединному интервалу.
Особенность сглаживания по четному числу уровней состоит в том, что каждая из численных (например, четырехчленных) средних относится к соответствующим промежуткам между смежными периодами. Для получения значений сглаженных уровней соответствующих периодов необходимо произвести центрирование расчетных средних.
Недостатком способа сглаживания рядов динамики является то, что полученные средние не дает теоретических рядов, в основе которых лежала бы математически выраженная закономерность.
3. Метод аналитического выравнивания.
Более совершенным
приемом изучения общей тенденции
в рядах динамики является аналитическое
выравнивание. При изучении общей
тенденции методом
· если относительно стабильны абсолютные приросты (первые разности уровней приблизительно равны), , сглаживание может быть выполнено по прямой;
· если абсолютные приросты равномерно увеличиваются (вторые разности уровней приблизительно равны), можно принять параболу второго порядка;
· при ускоренно возрастающих или замедляющихся абсолютных приростах - параболу третьего порядка;
· при относительно стабильных темпах роста- показательную функцию.
Для аналитического выравнивания наиболее часто используются следующие виды трендовых моделей: прямая (линейная), парабола второго порядка, показательная (логарифмическая) кривая, гиперболическая.
Цель аналитического выравнивания- определение аналитической или графической зависимости. На практике по имеющемуся временному ряду задают вид и находят параметры функции, а затем анализируют поведение отклонений от тенденции. Чаще всего при выравнивании используются следующие зависимости; линейная, параболическая и экспоненциальная.