Автор работы: Пользователь скрыл имя, 25 Февраля 2012 в 05:07, контрольная работа
Статистический учет существовал в глубокой древности, однако как наука статистика возникла лишь в 17 веке. Термин статистика произошел от лат.(status) т.е. состояние, определенное положение вещей. Первоначально он употреблялся в значениях слова государства ведении (описание достопримечательностей государства) В науку термин введен в 1746г. Немецким ученым Годфридом Ахельвалем, который начал читать данную дисциплину в Маргбургском университете.
1.Понятие статистика. Основные категории статистики.
1.1. Основные понятия статистики. 3
1.2. Основные категории статистики 4
2. Ряды динамики. Показатели ряда динамики, расчет. 14
2.1. Интервальные ряды динамики 15
2.2. Моментные ряды динамики 16
2.3. Ряд средних величин 17
2.4. Ряды относительных величин 18
2.5. Анализ рядов динамики 18
2.6. Анализ сезонных колебаний 25
2.7. Приведение рядов динамики к одинаковому основанию 28
2.8. Методы выравнивания рядов динамики 29
2.9. Метод скользящей средней 30
2.10. Метод аналитического выравнивания 32
Задача 1.
Абсолютные приросты (Δy) показывают, на сколько единиц изменился последующий уровень ряда по сравнению с предыдущим (гр.3. — цепные абсолютные приросты) или по сравнению с начальным уровнем (гр.4. — базисные абсолютные приросты). Формулы расчета можно записать следующим образом:
При уменьшении абсолютных значений ряда будет соответственно "уменьшение", "снижение".
Показатели абсолютного прироста свидетельствуют о том, что, например, в 1998 г. производство продукта "А" увеличилось по сравнению с 1997 г. на 4 тыс. т, а по сравнению с 1994 г. — на 34 тыс. т.; по остальным годам см. табл. 11.5 гр. 3 и 4.
Коэффициент роста показывает, во сколько раз изменился уровень ряда по сравнению с предыдущим (гр.5 — цепные коэффициенты роста или снижения) или по сравнению с начальным уровнем (гр.6 — базисные коэффициенты роста или снижения). Формулы расчета можно записать следующим образом:
Темпы роста показывают, сколько процентов составляет последующий уровень ряда по сравнению с предыдущим (гр.7 — цепные темпы роста) или по сравнению с начальным уровнем (гр.8 — базисные темпы роста). Формулы расчета можно записать следующим образом:
Так, например, в 1997 г. объем производства продукта "А" по сравнению с 1996 г. составил 105,5 % (
Темпы прироста показывают, на сколько процентов увеличился уровень отчетного периода по сравнению с предыдущим (гр.9- цепные темпы прироста) или по сравнению с начальным уровнем (гр.10- базисные темпы прироста ). Формулы расчета можно записать следующим образом:
Тпр = Тр - 100% или Тпр= абсолютный прирост / уровень предшествующего периода * 100%
Так, например, в 1996 г. по сравнению с 1995 г. продукта "А" произведено больше на 3,8 % (103,8 %- 100%) или (8:210)х100%, а по сравнению с 1994 г. — на 9% (109% — 100%).
Если абсолютные уровни в ряду уменьшаются, то темп будет меньше 100% и соответственно будет темп снижения (темп прироста со знаком минус).
Абсолютное значение 1% прироста (гр. 11) показывает, сколько единиц надо произвести в данном периоде, чтобы уровень предыдущего периода возрос на 1 %. В нашем примере, в 1995 г. надо было произвести 2,0 тыс. т., а в 1998 г. — 2,3 тыс. т., т.е. значительно больше.
Определить величину абсолютного значения 1% прироста можно двумя способами:
уровень предшествующего периода разделить на 100;
цепные абсолютные приросты разделить на соответствующие цепные темпы прироста.
Абсолютное значение 1% прироста =
В динамике, особенно за длительный период, важен совместный анализ темпов прироста с содержанием каждого процента прироста или снижения.
Заметим, что рассмотренная методика анализа рядов динамики применима как для рядов динамики, уровни которых выражены абсолютными величинами (т, тыс. руб., число работников и т.д.), так и для рядов динамики, уровни которых выражены относительными показателями (% брака, % зольности угля и др.) или средними величинами (средняя урожайность в ц/га, средняя заработная плата и т.п.).
Наряду с рассмотренными аналитическими показателями, исчисляемыми за каждый год в сравнении с предшествующим или начальным уровнем, при анализе рядов динамики необходимо исчислить средние за период аналитические показатели: средний уровень ряда, средний годовой абсолютный прирост (уменьшение) и средний годовой темп роста и темп прироста.
Методы расчета среднего уровня ряда динамики были рассмотрены выше. В рассматриваемом нами интервальном ряду динамики средний уровень ряда исчисляется по формуле средней арифметической простой:
Ежегодные абсолютные приросты изменялись по годам от 4 до 12 тыс.т (см.гр.3), а среднегодовой прирост производства за период 1995 — 1998 гг. составил 8,5 тыс. т.
Методы расчета среднего темпа роста и среднего темпа прироста требуют более подробного рассмотрения. Рассмотрим их на примере приведенных в таблице годовых показателей уровня ряда.
Средний годовой темп роста и средний годовой темп прироста
Прежде всего отметим, что приведенные в таблице темпы роста ( гр.7 и 8) являются рядами динамики относительных величин — производными от интервального ряда динамики (гр.2). Ежегодные темпы роста (гр.7) изменяются по годам ( 105%; 103,8%; 105,5%; 101,7%). Как вычислить среднюю величину из ежегодных темпов роста ? Эта величина называется среднегодовым темпом роста.
Среднегодовой темп роста исчисляется в следующей последовательности:
сначала по формуле средней геометрической исчисляют среднегодовой коэффициент роста (снижения)
на базе среднегодового коэффициента определяют среднегодовой темп роста () путем умножения коэффициента на 100%:
Среднегодовой темп прироста ( определяется путем вычитания из темпа роста 100%.
Среднегодовой коэффициент роста ( снижения ) по формулам средней геометрической может быть исчислен двумя способами:
1) на базе абсолютных показателей ряда динамики по формуле:
n — число уровней;
n — 1 — число лет в период;
2) на базе ежегодных коэффициентов роста по формуле
m — число коэффициентов.
Результаты расчета по формулам равны, так как в обеих формулах показатель степени — число лет в периоде, в течение которого происходило изменение. А подкоренное выражение — это коэффициент роста показателя за весь период времени (см. табл. 11.5, гр.6, по строке за 1998 г.).
Среднегодовой темп роста равен
Среднегодовой темп прироста определяется путем вычитания из среднегодового темпа роста 100%. В нашем примере среднегодовой темп прироста равен
Следовательно, за период 1995 — 1998 гг. объем производства продукта "А" в среднем за год возрастал на 4,0%. Ежегодные темпы прироста колебались от 1,7% в 1998 г. до 5,5% в 1997 г. (за каждый год темпы прироста см. в табл. 11.5, гр. 9).
Среднегодовой темп роста (прироста) позволяет сравнивать динамику развития взаимосвязанных явлений за длительный период времени (например, среднегодовые темпы роста численности работающих по отраслям экономики, объема производства продукции и др.), сравнивать динамику какого-либо явления по разным странам, исследовать динамику какого-либо явления по периодам исторического развития страны.
2.6. Анализ сезонных колебаний
Изучение сезонных колебаний проводится с целью выявления закономерно повторяющихся различий в уровне рядов динамики в зависимости от времени года. Так, например, реализация сахара населению в летний период значительно возрастает в связи с консервированием фруктов и ягод. Потребность в рабочей силе в сельскохозяйственном производстве различна в зависимости от времени года. Задача статистики состоит в том, чтобы измерить сезонные различия в уровне показателей, а чтобы выявленные сезонные различия были закономерными (а не случайными) необходимо строить анализ на базе данных за несколько лет, по крайней мере не менее чем за три года. В табл. 11.6 приведены исходные данные и методика анализа сезонных колебаний методом простой средней арифметической.
Средняя величина за каждый месяц исчисляется по формуле средней арифметической простой. Например, за январь 2202 = (2106 +2252 +2249):3.
Индекс сезонности ( табл. 11.5 гр.7.) исчисляется путем деления средних величин за каждый месяц на общую среднюю месячную величину, принятую за 100%. Средняя месячная за весь период может быть исчислена путем деления общего расхода горючего за три года на 36 месяцев (1188082 т : 36 = 3280 т) или путем деления на 12 суммы средних месячных, т.е. суммарного итога по гр. 6 (2022 + 2157 + 2464 и т.д. + 2870) : 12.
Таблица 11.6 Сезонные колебания потребления горючего в сельскохозяйственных предприятиях района за 3 года
месяцы | Расход горючего, тонн | Сумма за 3 года, т (2+3+4) | Средняя месячная за 3 года, т | Индекс сезонности, % | ||
1 год | 2 года | 3 года | ||||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Январь | 2106 | 2252 | 2249 | 6607 | 2202 | 67,1 |
Февраль | 2120 | 2208 | 2142 | 6470 | 2157 | 65,7 |
Март | 2300 | 2580 | 2512 | 7392 | 2464 | 75,1 |
Апрель | 3056 | 3300 | 3412 | 9768 | 3256 | 99,2 |
Май | 3380 | 3440 | 3469 | 10289 | 3430 | 104,6 |
Июнь | 4044 | 4210 | 4210 | 12464 | 4155 | 126,6 |
Июль | 4280 | 4184 | 4296 | 12760 | 4253 | 130,0 |
Август | 4088 | 4046 | 4020 | 12154 | 4051 | 123,5 |
Сентябрь | 3604 | 3622 | 3631 | 10857 | 3619 | 110,3 |
Октябрь | 3818 | 3636 | 3583 | 11037 | 3679 | 112,1 |
Ноябрь | 3120 | 3218 | 3336 | 9674 | 3224 | 98,3 |
Декабрь | 2778 | 2802 | 3030 | 8610 | 2870 | 87,5 |
итого | 38694 | 39498 | 39890 | 118082 | 3280 | 100,0 |
Рис. 11.1. Сезонные колебания потребления горючего в сельскохозяйственных предприятиях за 3 года.
Для наглядности на основе индексов сезонности строится график сезонной волны (рис. 11.1). По оси абсцисс располагают месяцы, а по оси ординат — индексы сезонности в процентах (табл. 11.6, гр.7). Общая средняя месячная за все годы располагается на уровне 100%, а средние месячные индексы сезонности в виде точек наносят на поле графика в соответствии с принятым масштабом по оси ординат.
Точки соединяют между собой плавной ломаной линией.
В приведенном примере годовые объемы расхода горючего различаются незначительно. Если же в ряду динамики наряду с сезонными колебаниями имеется ярко выраженная тенденция роста (снижения), т.е. уровни в каждом последующем году систематически значительно возрастают (уменьшаются) по сравнению с уровнями предыдущего года, то более достоверные данные о размерах сезонности получим следующим образом:
для каждого года вычислим среднюю месячную величину;
исчислим индексы сезонности за каждый год путем деления данных за каждый месяц на среднюю месячную величину за этот год и умножения на 100%;
за весь период исчислим средние индексы сезонности по формуле средней арифметической простой из исчисленных за каждый год месячных индексов сезонности. Так, например, за январь средний индекс сезонности получим, если сложим январские значения индексов сезонности за все годы (допустим за три года) и разделим на число лет, т.е. на три. Аналогично исчислим за каждый месяц средние индексы сезонности.
Переход за каждый год от абсолютных месячных значений показателей к индексам сезонности позволяет устранить тенденцию роста (снижения) в ряду динамики и более точно измерить сезонные колебания.
В условиях рынка при заключении договоров на поставку различной продукции (сырья, материалов, электроэнергии, товаров) необходимо располагать информацией о сезонных потребностях в средствах производства, о спросе населения на отдельные виды товаров. Результаты исследования сезонных колебаний важны для эффективного управления экономическими процессами.
2.7. Приведение рядов динамики к одинаковому основанию
В экономической практике часто возникает необходимость сравнения между собой нескольких рядов динамики (например, показатели динамики производства электроэнергии, производства зерна, продажи легковых автомобилей и др.). Для этого нужно преобразовать абсолютные показатели сравниваемых рядов динамики в производные ряды относительных базисных величин, приняв показатели какого-либо одного года за единицу или за 100%.Такое преобразование нескольких рядов динамики называется приведением их к одинаковому основанию. Теоретически за базу сравнения может быть принят абсолютный уровень любого года, но в экономических исследованиях для базы сравнения надо выбирать период, имеющий определенное экономическое или историческое значение в развитии явлений. В настоящее время за базу сравнения целесообразно принять, например, уровень 1990 г.
2.8. Методы выравнивания рядов динамики
Для исследования закономерности (тенденции) развития изучаемого явления необходимы данные за длительный период времени. Тенденцию развития конкретного явления определяет основной фактор. Но наряду с действием основного фактора в экономике на развитие явления оказывают прямое или косвенное влияние множество других факторов, случайных, разовых или периодически повторяющихся (годы, благоприятные для сельского хозяйства, засушливые и т.п.). Практически все ряды динамики экономических показателей на графике имеют форму кривой, ломаной линии с подъемами и снижениями. Во многих случаях по фактическим данным ряда динамики и по графику трудно определить даже общую тенденцию развития. Но статистика должна не только определить общую тенденцию развития явления (рост или снижение), но и дать количественные (цифровые) характеристики развития.
Тенденции развития явлений изучают методами выравнивания рядов динамики:
1. Метод укрупнения интервалов
2. Метод скользящей средней
3. Метод аналитического выравнивания
В табл. 11.7 (гр. 2) приведены фактические данные о производстве зерна в России за 1981- 1992 гг. (во всех категориях хозяйств, в весе после доработки) и расчеты по выравниванию этого ряда тремя методами.
Метод укрупнения интервалов времени (гр. 3).
Учитывая, что ряд динамики небольшой, интервалы взяты трехлетние и для каждого интервала исчислены средние. Среднегодовой объем производства зерна по трехлетним периодам исчислен по формуле средней арифметической простой и отнесен к среднему году соответствующего периода. Так, например, за первые три года (1981 — 1983 гг.) средняя записана против 1982 г.: (73,8+ 98,0+104,3) : 3= 92,0 (млн. т). За следующий трехлетний период (1984 — 1986 гг.) средняя (85,1 +98,6+ 107,5) : 3= 97,1 млн. т записана против 1985 г.
За остальные периоды результаты расчета в гр. 3.
Приведенные в гр. 3 показатели среднегодового объема производства зерна в России свидетельствуют о закономерном увеличении производства зерна в России за период 1981 — 1992 гг.
2.9. Метод скользящей средней
Метод скользящей средней (см. гр. 4 и 5) также основан на исчислении средних величин за укрупненные периоды времени. Цель та же — абстрагироваться от влияния случайных факторов, взаимопогасить их влияние в отдельные годы. Но метод расчета другой.
В приведенном примере исчислены пятизвенные (по пятилетним периодам) скользящие средние и отнесены к серединному году в соответствующем пятилетнем периоде. Так, за первые пять лет (1981-1985 гг.) по формуле средней арифметической простой исчислен среднегодовой объем производства зерна и записан в табл. 11.7 против 1983 г.(73,8+ 98,0+ 104,3+ 85,1+ 98,6): 5= 92,0 млн. т; за второй пятилетний период (1982 — 1986 гг.) результат записан против 1984 г. (98,0 + 104,3 +85,1 + 98,6 + 107,5):5 =493,5:5 = 98,7 млн. т.