Автор работы: Пользователь скрыл имя, 01 Мая 2012 в 15:53, лабораторная работа
В процессе исследования совокупности необходимо решить ряд задач.
I. Статистический анализ выборочной совокупности
1. Выявить наличие среди исходных данных резко выделяющихся значений признаков (аномалий в данных) и исключить их из выборки.
2. Рассчитать обобщающие статистические показатели совокупности по изучаемым признакам: среднюю арифметическую ( ), моду (Мо), медиану (Ме), размах вариации (R), дисперсию( ), среднее квадратическое отклонение ( ), коэффициент вариации (Vσ).
3. На основе рассчитанных показателей в предположении, что распределения единиц по обоим признакам близки к нормальному, оценить:
а) степень колеблемости значений признаков в совокупности;
б) степень однородности совокупности по изучаемым признакам;
в) количество попаданий индивидуальных значений признаков в диапазоны ( ), ( ), ( )..
Расхождение с правилом «трех сигм» может быть существенным. Например, менее 60% значений хi попадают в центральный диапазон ( ) или значительно более 5% значения хi выходит за диапазон ( ). В этих случаях распределение нельзя считать близким к нормальному.
Вывод:
Сравнение данных графы 5 табл.9 с правилом «трех сигм» показывает на их незначительное расхождение, следовательно, распределение единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов можно считать близким к нормальному.
Сравнение данных графы 6 табл.9 с правилом «трех сигм» показывает на незначительное расхождение, следовательно, распределение единиц совокупности по признаку Выпуск продукции можно считать близким к нормальному.
Задача 4. Для ответа на вопросы 4а) – 4в) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков.
Для сравнения степени колеблемости значений изучаемых признаков, степени однородности совокупности по этим признакам, надежности их средних значений используются коэффициенты вариации Vs признаков.
Вывод:
Так как Vs для первого признака меньше , чем Vs для второго признака, то колеблемость значений первого признака меньше колеблемости значений второго признака, совокупность более однородна по второму признаку, среднее значение первого признака является более надежным, чем у второго признака.
Задача 5. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята – на рис.2.
Возможность
отнесения распределения
1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.
Если
гистограмма имеет одновершинну
2. Для дальнейшего анализа формы распределения используются описательные параметры выборки – показатели центра распределения ( , Mo, Me) и вариации ( ). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.
Нормальное распределение является симметричным, и для него выполняются соотношения:
Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределения с небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу.
3. Для анализа длины «хвостов» распределения используется правило «трех сигм». Согласно этому правилу в нормальном и близким к нему распределениях крайние значения признака (близкие к хmin и хmax) встречаются много реже (5-7 % всех случаев), чем лежащие в диапазоне ( ). Следовательно, по проценту выхода значений признака за пределы диапазона ( ) можно судить о соответствии длины «хвостов» распределения нормальному закону.
Вывод:
1. Гистограмма является многовершинной.
2. Распределение приблизительно симметрично, так как параметры =, Mo, Me отличаются незначительно:
3.
“Хвосты” распределения являютс
Следовательно, на основании п.п. 1,2,3, можно сделать заключение о близости изучаемого распределения к нормальному.
II. Статистический анализ генеральной совокупности
Задача 1. Рассчитанные в табл.3 генеральные показатели представлены в табл.10.
Описательные статистики генеральной совокупности
Обобщающие статистические показатели совокупности по изучаемым признакам | Признаки | |
Среднегодовая стоимость основных производственных фондов | Выпуск продукции | |
Стандартное отклонение , млн. руб. | 1197,28 | 1428,25 |
Дисперсия | 1433480,74 | 2039906,35 |
Асимметричность As | -0,15 | 0,04 |
Эксцесс Ek | -0,34 | -0,20 |
Для
нормального распределения
RN=6sN.
В условиях близости распределения единиц генеральной совокупности к нормальному это соотношение используется для прогнозной оценки размаха вариации признака в генеральной совокупности.
Ожидаемый размах вариации признаков RN:
- для первого признака RN =7183,68,
- для второго признака RN =8569,5.
Соотношение между генеральной и выборочной дисперсиями:
- для первого признака 1,03, т.е. расхождение между дисперсиями незначительное ;
-для второго признака 1,03, т.е. расхождение между дисперсиями незначительное.
Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности.
Как правило, статистические характеристики выборочной и генеральной совокупностей не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки (ошибкой репрезентативности). Ошибка выборки – это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность
определяет ошибку репрезентативности для средней величины признака.
Так как ошибки выборки всегда случайны, вычисляют среднюю и предельную ошибки выборки.
1.
Для среднего значения
Для изучаемых признаков средние ошибки выборки даны в табл. 3:
- для признака Среднегодовая стоимость основных производственных фондов
=218,59,
- для признака Выпуск продукции
=260,76.
2. Предельная ошибка выборки определяет границы, в пределах которых лежит генеральная средняя . Эти границы задают так называемый доверительный интервал генеральной средней – случайную область значений, которая с вероятностью P, близкой к 1, гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности.
Для уровней надежности P=0,954; P=0,683 оценки предельных ошибок выборки даны в табл. 3 и табл. 4.
Для генеральной средней предельные значения и доверительные интервалы определяются выражениями:
,
Предельные
ошибки выборки и ожидаемые границы
для генеральных средних
Таблица 11
Предельные ошибки выборки и ожидаемые границы для генеральных средних
Доверительная
вероятность Р |
Коэффи-циент
доверия t |
Предельные ошибки выборки, млн. руб. | Ожидаемые
границы для средних | ||
для первого
признака |
для второго
признака |
для первого
признака |
для второго
признака | ||
0,683 | 1 | 222,57 | 265,51 | 6697,43 |
6190,94 |
0,954 | 2 | 447,07 | 533,32 | 6472,93 |
5923,13 |
Вывод:
Увеличение уровня надежности ведет к расширению ожидаемых границ для генеральных средних.
Задача 3. Рассчитанные в табл.3 значения коэффициентов асимметрии As и эксцесса Ek даны в табл.10.
1.Показатель асимметрии As оценивает смещение ряда распределения влево или вправо по отношению к оси симметрии нормального распределения.
Если асимметрия правосторонняя (As>0) то правая часть эмпирической кривой оказывается длиннее левой, т.е. имеет место неравенство >Me>Mo, что означает преимущественное появление в распределении более высоких значений признака (среднее значение больше серединного Me и модального Mo).
Если асимметрия левосторонняя (As<0), то левая часть эмпирической кривой оказывается длиннее правой и выполняется неравенство <Me<Mo, означающее, что в распределении чаще встречаются более низкие значения признака (среднее значение меньше серединного Me и модального Mo).
Чем больше величина |As|, тем более асимметрично распределение. Оценочная шкала асимметрии:
Информация о работе Автоматизированный априорный анализ статистической совокупности в среде MS Excel