Фізіологічна класифікація фізичних вправ

Автор работы: Пользователь скрыл имя, 10 Декабря 2011 в 10:53, реферат

Краткое описание

В своей повседневной деятельности - в быту, на производстве, во время занятий физической культурой и спортом - человек выполняет самые разнообразные двигательные действия: С точки зрения физиологии совокупность непрерывно связанных друг с другом двигательных действий (движений), направленных на достижение определенной цели (решение двигательной задачи), является упражнением.

Содержание работы

1. Физиологическая классификация физических упражнений.
2. Общая физиологическая классификация физических упражнений.
2.1. Локальные, региональные и глобальные упражнениния;
2.2. Статические и динамические упражнения;
2.3. Силовые, cкоростно-силовые упражнения и упражнения на выносливость;
2.4. Энергетическая характеристика физических упражнений.
3. Физиологическая классификация спортивных упражнений.
3.1. Классификация циклических упражнений;
3.2. Классификация ациклических упражнений.
4. Список литературы.

Содержимое работы - 1 файл

Физиология.docx

— 87.46 Кб (Скачать файл)

     Однако одинаковая физическая нагрузка вызывает неодинаковые физиологические реакции у людей разного возраста и пола, у людей с неодинаковой степенью функциональной подготовленности (тренированности), а также у одного и того же человека в разных условиях (например, при повышенных или пониженных температуре или давлении воздуха). Кроме того, различные физиологические реакции наблюдаются у одного и того же человека при одинаковой по мощности физической нагрузке, выполняемой разными мышечными группами (руками или ногами) или при разных положениях тела (лежа или стоя). Так, у гребцов на каноэ; пловцов или бегунов, выполняющих одинаковую по физической мощности работу (с одинаковой скоростью потребления О2), физиологические нагрузки (реакции) сильно различаются.

     Следовательно, показатели физической мощности упражнения не могут быть использованы в качестве критерия для единой физиологической классификации различных спортивных упражнений, выполняемых людьми разного пола и возраста, с неодинаковыми функциональными возможностями и подготовленностью (тренированностью) или одним и тем же спортсменом в разных условиях. Поэтому в качестве классификационного признака чаще используются показатели физиологической мощности или физиологической нагрузки.

     Одним из таких показателей служит предельное время выполнения данного упражнения. Действительно, чем выше физиологическая мощность ("тяжесть работы"), тем короче предельное время выполнения работы (см. рис. 2 и 3). Проанализировав по данным, мировых рекордов зависимость между скоростью преодоления разных дистанции и предельным (рекордным) временем (см. рис. 3), В. С. Фарфель разделил "кривую рекордов" на четыре зоны относительной мощности: с предельной продолжительностью упражнений до 20 с (зона максимальной мощности), от 20 с до 3-5 мин (зона субмаксимальной мощности), от 3-5 до 30-40 мин (зона большой мощности) и более 40 мин (зона умеренной мощности). Такая классификация спортивных циклических упражнении получила широкое распространение.

     Другой подход к характеристике физиологической мощности состоит в определении относительных физиологических сдвигов. Характер и величина, ответных физиологических реакций на одну и ту же физическую нагрузку зависят прежде всего от предел ь н ых функциональных возможностей ведущих (для данного упражнения) физиологических систем. При выполнении одинаковой физической нагрузки у людей с более высокими функциональными возможностями ведущих систем величина реакций (физиологические сдвиги) меньше, и следовательно, физиологическая нагрузка на ведущие (и другие) системы и соответственно на организм в целом относительно меньше, чем у людей с более низкими функциональными возможностями. Одинаковая физическая нагрузка будет относительно труднее ("тяжелее") для.вторых, и, следовательно, предельное время ее выполнения у них будет короче, чем у первых. Соответственно первые способны выполнять такие большие физические нагрузки, которые недоступны вторым.

     Например, два спортсмена выполняют одну и ту же абсолютную физическую Нагрузку с одинаковым рабочим потреблением О2 - 3 л/мин. Однако у одного из спортсменов МПК равно 6 л/мин, а у другого - 4,5 л/мин. Соответственно относительная физиологическая нагрузка на. кислородтранспортную систему у этих спортсменов далеко не одинакова, так как у первого выполняемая физическая работа "нагружает" эту систему лишь на 50% от ее предельных возможностей, а у второго - на 75%. Следовательно, относительная физиологическая нагрузка у первого спортсмена меньше, чем у второго.

     Таким образом, для физиологической классификации спортивных упражнений, используются показатели относительной физиологической "мощности: физиологической н а-грузки, физиологической напряженности, тяжести работы. Такими показателями служат относительные физиологические сдвиги, которые возникают в ведущих функциональных системах в ответ на данную физическую нагрузку, выполняемую в определенных условиях внешней среды. Эти сдвиги выявляются путем сравнения текущих рабочих показателей деятельности ведущих физиологических, систем с предельными (максимальными) показателями.

     3.1. Классификация циклических упражнений
 
     
     
 
Рис. 4. Примерный  вклад (в процентах) аэробных и анаэробных энергетических источников на разных дистанциях легкоатлетического бега
          
     
 
Рис. 5. Относительный  вклад (в процентах) трех энергетических систем (I - фосфагенной, II - лактацидной, III - кислородной) при выполнении упражнений разной предельной продолжительности
      
 
 
 
 
 

     Энергетические запросы организма (работающих мышц) удовлетворяются, как известно, двумя основными путями: анаэробным и аэробным. Соотношение этих двух путей энергопродукции неодинаково в разных циклических упражнениях (рис. 4). При выполнении любого упражнения практически действуют все три энергетические системы: анаэробные фосфагенная (алактатная) и лакта-цидная (гликолитическая) и аэробная (кислородная, окислительная). "Зоны" их действия частично перекрываются (рис. 5). Поэтому трудно выделить "чистый" вклад каждой из энергетических систем, особенно при работе относительно небольшой предельной продолжительности. В этой связи часто объединяют в пары "соседние" по энергетической мощности (зоне действия) системы: фосфагенную с лактацидной, лактацидную с кислородной. Первой при этом указывается система, энергетический вклад которой больше.

     В соответствии с относительной нагрузкой на анаэробные и аэробные энергетические системы все циклические упражнения можно разделить на анаэробные и аэробные (см. схему на стр. 14). Первые - с преобладанием анаэробного, вторые - аэробного компонента энергопродукции. Ведущим качеством при выполнении анаэробных упражнений служит мощность (скоростно-силовые возможности), при выполнении аэробных упражнений- выносливость.

     Соотношение разных путей (систем) знергопродукции в значительной мере определяет, характер и степень изменений в деятельности различных физиологических систем, обеспечивающих выполнение разных упражнений.

     Анаэробные упражнения. Выделяются три группы анаэробных упражнений:

  1. максимальной анаэробной мощности (анаэробной мощности) ;
  2. околомаксимальной анаэробной мощности (смешанной анаэробной мощности);
  3. субмаксимальной анаэробной мощности (анаэробно-аэробной мощности).

     Энергетические и эргометрические характеристики анаэробных упражнений приведены в табл. 5.

     Таблица 5. Энергетическая и  эргометрическая  характеристика анаэробных циклических упражнений

Группа Анаэробный  компонент энергопродукции, % от обшей  энергопродукции Соотношение трех энергетических систем, % Рекордная мощность, ккал/мин Предельная  рекордная продолжи-тельность при беге, с
фосфагенная + лактацидная лактацидная + кислородная Кислородная
Максимальной  анаэробной мощности 90-100 95 5   120 До 10
Околомаксимальной анаэробной мощности 75- 85 70 20 10 100 20-50
Субмаксимальной анаэробной мощности 60- 70 25 60 15 40 60-120
 

     Упражнения максимальной анаэробной мощности (анаэробной мощности) - это упражнения с почти исключительно анаэробным способом энергообеспечения работающих мышц: анаэробный компонент в общей энергопродукции составляет от 9ч0 до 100%. Он обеспечивается главным образом за счет фосфагенной энергетической системы (АТФ + КФ) при некотором участии лактацидной (гликоли-тической) системы. Рекордная максимальная анаэробная мощность, развиваемая выдающимися спортсменами во время спринтерского бега, достигает 120 ккал/мин. Возможная предельная продолжительность таких упражнений - несколько секунд. Таковы, например, соревновательный бег на дистанциях до 100 м, спринтерская велогонка на треке, плавание и ныряние на дистанцию до 50 м.

     Усиление деятельности вегетативных систем происходит в процессе работы постепенно (см. главу II. 2). Из-за кратковременности анаэробных упражнений во время их выполнения функции кровообращения и дыхания, не успевают достигнуть возможного максимума. На протяжении максимального анаэробного упражнения спортсмен либо вообще не дышит, либо успевает выполнить лишь несколько дыхательных циклов. Соответственно "средняя" легочная вентиляция не превышает 20-30% от. максимальной. ЧСС .повышается еще до старта (до 140-150 уд/мин) и во время упражнения продолжает расти, достигая наибольшего значения сразу после финиша - 80-90% от ''максимальной (160-180 уд/мин). Поскольку энергетическую основу этих упражнений составляют анаэробные процессы, усиление деятельности кардио-респираторной (кислородтран-спортной) системы практически не имеет значения для энергетического обеспечения самого упражнения. Концентрация лактата в крови за время работы изменяется крайне незначительно, хотя в рабочих мышцах она может достигать в конце работы 10 ммоль/кг и даже больше. Концентрация лактата в крови продолжает нарастатьна протяжении нескольких минут после прекращения работы и составляет максимально 5-8 ммоль/л (рис. 6).

     Перед выполнением анаэробных упражнений несколько повышается концентрация глюкозы в крови. До начала и в результате -их выполнения в крови очень существенно повышается концентрация катехоламинов (адреналина и норадреналина) и гормона роста, но несколько снижается концентрация инсулина; концентрации глюкагона и кортизола заметно не меняются (см. рис. 6).

     Ведущие физиологические системы и механизмы, определяющие спортивный результат в этих упражнениях,- центрально-нервная регуляция мышечной деятельности (координация движений с проявлением большой мышечной мощности), функциональные свойства нервно-мышечного аппарата (скоростно-силовые), емкость и мощность фосфагенной энергетической системы рабочих мышц.

     Упражнения околомаксимальной анаэробной мощности (смешанной анаэробной мощности)-это упражнения с преимущественно анаэробным энергообеспечением работающих мышц. Анаэробный компонент в общей энергопродукции составляет 75- 85% - отчасти за снет фосфагенной и в наибольшей мере за счет лактацидной (гликолитической) энергетических систем. Рекордная околомаксимальная анаэробная мощность в беге - в пределах 50-100 ккал/мин. Возможная предельная продолжительность таких упражнений у выдающихся спортсменов, колеблется от 20 до 50 с. К соревновательным упражнениям относится бег на дистанциях 200-400 м, плавание на дистанциях до 100 м, бег на коньках на 500 м.

     
     
 
Рис. 7. Частота сердечных  сокращений перед  началом, во время  и после бега на 200 и 400 м
     

     Для энергетического обеспечения этих упражнений значительное усиление деятельности кислородтранспортной системы уже играет определенную энергетическую роль, причем тем большую, чем продолжительнее упражнение. Предстартовое повышение ЧСС очень значительно (до 150-160 уд/мин). Наибольших значений (80-90% от максимальной) она достигает сразу после финиша на 200 м и на финише 400 м (рис. 7). В процессе выполнения упражнения быстро растет легочная вентиляция, так что к концу упражнения длительностью около 1 мин она может достигать 50-60% от максимальной рабочей вентиляции для данного спортсмена (60-80 л/мин). Скорость потребления О2 также быстро нарастает на дистанции и на финише 400 м может составлять уже 70-80% от индивидуального МПК.

     Концентрация лактата в крови после упражнения весьма высокая- до 15 ммоль/л у квалифицированных спортсменов. Она тем выше, чем больше дистанция и выше квалификация спортсмена. Накопление лактата в крови связано с очень большой скоростью его образования в рабочих мышцах (как результат интенсивного анаэробного гликолиза).

     Концентрация глюкозы в крови несколько повышена по сравнению с условиями покоя (до 100-120 мг%). Гормональные сдвиги в крови сходны с теми, которые происходят при выполнении упражнения максимальной анаэробной мощности.

     Ведущие физиологические системы и механизм ы, определяющие спортивный результат в упражнениях околомаксимальной анаэробной мощности, те же, что и в упражнениях предыдущей группы, и, кроме того, мощность лактацидной (глико-литической) энергетической системы рабочих мышц.

     Упражнения субмаксимальной анаэробной мощности (анаэробно-аэробной мощности) - это упражнения с преобладанием анаэробного компонента энергообеспечения работающих мышц. В общей энергопродукции организма он достигает 60-70% и обеспечивается преимущественно за счет лактацидной (гликолитической) энергетической системы. В энергообеспечении этих упражнений значительная доля принадлежит кислородной (окислительной, аэробной) энергетической системе. Рекордная мощность в беговых упражнениях составляет примерно 40 ккал/мин. Возможная предельная продолжительность соревновательных упражнений у выдающихся спортсменов - от 1 до 2 мин. К соревновательным упражнениям относятся: бег на 800 м, плавание на 200 м, бег на коньках на 1000 и 1500 м, заезды на 1 км в велоспорте (трек).

Информация о работе Фізіологічна класифікація фізичних вправ