Автор работы: Пользователь скрыл имя, 22 Декабря 2011 в 22:52, реферат
Эксимерный лазер — разновидность ультрафиолетового газового лазера, широко применяемая вглазной хирургии (Кератэктомия) и полупроводниковом производстве.
Класс импульсных газовых лазеров, объединенных названием ”эксимерные” возник сравнительно недавно, в начале 70-ых годов. В настоящее время эксимерные лазеры на галогенидах благородных газов являются наиболее мощными источниками когерентного излучения в УФ-области спектра, генерация получена на большом количестве длин волн от вакуумного ультрафиолета до видимой области спектра.
Рис. 3.Накачка электронным пучком.
Наилучшие результаты достигнуты на фторидах криптона и аргона (KrF и ArF), удельный энергосъем при использовании которых достигает 3 - 30 Дж/л, а рабочий объем возбуждения несколько десятков литров. Энергия импульса излучения при объеме рабочей среды 36 л равна 100 Дж при КПД 1,5% (КПД это отношение энергии излучения к поглощенной энергии электронного пучка). Для оценки полного КПД необходимо учесть КПД преобразования энергии первичного источника питания в энергию электронного возбуждающего пучка, в оптимальных условиях достигающих 50%.
Создана лазерная установка с рабочим объемом 40 см3 (камера длиной 20 см и диаметром 2 см), на которой получены импульсы излучения с энергией 7 мДж. Возбуждение осуществляется электронным пучком 250 - 300 кэВ и током до 5 кА. В качестве рабочей лазерной среды используется смесь газов Ar, Xe, SF6 в соотношении 75: 1: 0,1 при давлении 0,71 МПа.
Способ возбуждения электронным пучком имеет ряд достоинств, к которым следует отнести: возможность возбуждения высоколежащих уровней атомов (т.е. получения излучения в УФ и видимом диапазонах длин волн); возможность возбуждения газов при высоком давлении и больших объемах, что обеспечивает поучение больших энергий излучения; возможность работы при частотах следования импульсов до 100 и более Гц и, следовательно, получение больших средних мощностей излучения. Но этому способу возбуждения присущи и некоторые недостатки, к числу которых относятся трудности введения энергии электронного пучка в газ с достаточно равномерным ее распределением по объему, сложность электронных ускорителей, существенно повышающих стоимость лазера.
Что касается перспектив дальнейшего совершенствования эксимерных лазеров с электронным возбуждением, то можно отметить следующее. Для рассматриваемого типа лазеров наиболее перспективной с точки зрения эффективности представляется квазимолекула KrF*. Теоретический КПД лазера на основе этой активной среды (по отношению к энергии, вложенной в активную среду) составляет 22%, а при возбуждении электрическим разрядом и пучком 35%. Во всех экспериментальных установках, на которых была получена генерация, параметры были неоптимальными, в связи с чем полный КПД таких лазеров не превышал 1 - 2%. Поэтом вопрос с реально достижимых КПД остается открытым и требует дальнейших исследований; энергосъем этих лазеров предполагается увеличить до 40 - 50 Дж/л.
При
использовании
Предионизация используется для предотвращения дугового разряда и обычно достигается излучающими в УФ диапазоне искровыми разрядами, пробегающими параллельно оси трубки. Поскольку глубина проникновения УФ излучения в газовую смесь ограничена, для больших установок иногда применяют предионизацию рентгеновским излучением.
Рис. 4. Накачка электрическим разрядом.
К другим методам предионизации относятся использование импульсных источников электронного пучка (предионизация электронным пучком) и ионизация благодаря коронному эффекту (коронная предионизация). Как только произошла ионизация во всем объеме лазерного разряда, закорачивается быстродействующий вентиль и через электроды разряда проскакивает главный разрядный импульс. Поскольку время жизни верхнего уровня сравнительно невелико, а также чтобы избежать образования дуги, необходимо обеспечить быструю накачку (длительность импульса накачки 10 - 20 нс). В случае, представленном на рисунке 1, это достигается тем, что уменьшают по возможности индуктивность контура и используют безындукционные конденсаторы.
Эффект предионизации тлеющим разрядом помогает получить равномерные и согласованные профили разрядов с минимумом ответвлений от основного разряда. Параметры, влияющие на предионизацию, такие как порог предионизации, начальная плотность электронов и согласованность предионизации, сильно зависят от составляющих резонатора: профиль электрода, тип электрода, давление в газовой среде, длительность предионизации, потери электронов при предионизации, временная задержка между предионизацией и основным разрядом, время нарастания основного импульса; а так же от основных геометрических параметров резонатора.
Два наиболее распространенных метода предионизации:
для эксимерных лазеров малых и средних размеров - предионизация электродами, расположенными вблизи от главных электродов;
для
больших систем - предионизация рентгеновскими
источниками.
Рис. 5. Сектор кюветы, отвечающий за предионизацию газа.
Предионизационные
электроды, показанные на рисунке 7, генерируют
искровой разряд приблизительно за 10 нс
до основного разряда. Искры инициируют
УФ излучение, достаточное для предионизации
рабочего газа с начальной плотностью
около 108 электронов/см3 между
электродами. В последних моделях коммерческих
эксимерных лазеров были введены новые
методы предионизации, например, Поверхностный
разряд в диэлектрике - Creeping Discharge
Пороговые значения инверсной населенности в эксимерных лазерах обычно высокие в связи с короткой длиной волны и значительной шириной линии основных переходов. Типичное значение концентрации активных носителей заряда на верхнем рабочем уровне составляет 1014 - 1015 см3. Такие концентрации могут быть получены только при очень высокой плотности энергии накачки (10-2 Дж/см3). Для этого необходимы специальные электроразрядные цепи. Обычно они состоят из емкостей и индуктивностей и в их состав входят специальные высоковольтные ключи.
Рис. 6 Разрядная цепь эксимерного лазера с тиратроном
В современных эксимерных лазерах высоковольтные ключи заменили тиратроны. Конструкции стандартного и усовершенствованного тиратронов приведены на рисунке 7.
Рис. 7. Конструкции стандартного и усовершенствованного тиратронов
Колба тиратрона заполнена H2. Давление водорода в колбе определяет запирающее напряжение. В режиме отсутствия проводимости решетка, расположенная между электродами, смещается в отрицательном направлении для удержания свободных электронов, смещаемых при нагреве ближе к катоду. При подаче положительного импульса электроны начинают проходить через решетку, и тиратрон переходит в режим проводимости.
Дополнительные решетки в усовершенствованной модели тиратрона позволяют получить более высокое запирающее напряжение, более надежное включение и более равномерный разряд.
Часто для снижения нагрузки на тиратроне в цепь вводят магнитный ключ (рис.8).
Рис. 8. Цепь с магнитным переключателем.
Еще одно решение при проектировании разрядных цепей заключается в использовании твердотельных полупроводниковых ключей. Последние разработки в этой области нацелены на адаптацию твердотельных ключей к работе с высокими напряжениями.
Более
простым в технической
В
качестве генераторов импульсов
накачки в рассматриваемых
В некоторых конструкциях предусматривается введение дополнительного третьего электрода, устанавливаемого вблизи от анода. Возникающий в этом случае между третьим электродом и анодом микроразряд играет роль предионизатора основного электронного разряда.
Преимуществом
такой схемы накачки является
простота конструкции по сравнению
со схемами электронного возбуждения,
поскольку в данном случае отпадает
необходимость в дополнительной
электронной пушке (электронном
ускорителе) и разделительной фольги
со всеми вытекающими из-за ее применения
трудностями. Кроме того, в подобных
лазерах можно получить значительно
более высокие частоты
Перспективным способом накачки эксимерных лазеров является также комбинированный способ - электрическим разрядом и электронным пучком, используемым для предионизации.
При накачке активной среды электрическим разрядом с предионизацией последнего электронным пучком требуется два источника накачки - электронный ускоритель и источник импульсного высоковольтного напряжения. Но большая доля энергии накачки в этом случае приходится на электрический разряд, что позволяет использовать для предионизации относительно маломощные электронные ускорители.
Комбинированный
способ накачки позволяет сохранить
преимущества возбуждения электронным
пучком и создать потенциальные
возможности для повышения
Что касается работы в режиме редко повторяющихся вспышек, то в настоящее время получен удельный энергосъем, достигающий 5 Дж/л. Ожидается, что при оптимизации параметров лазера это значение будет увеличено в несколько раз.
Рис. 9. Лазер с разрядом, стабилизированным электронным пучком
Учитывая опыт разработки СО2 - лазеров, можно полагать, что активный объем рабочей лазерной камеры будет увеличен до 100 л.
Поэтому вполне реальным представляется создание эксимерных лазеров с энергией излучения в импульсе порядка 1 кДж и более.
Возбуждение двойным электрическим разрядом также является довольно перспективным методом для эксимерных лазеров. В этом случае первый импульс выполняет роль предионизатора активной лазерной среды, а второй - рабочего. Интервал между этими импульсами выбирается меньше постоянной времени релаксации предварительно ионизированных частиц, что существенно облегчает условия для возникновения основного электрического разряда и позволяет повысить КПД системы.