Автор работы: Пользователь скрыл имя, 25 Декабря 2010 в 15:39, реферат
Актуальность применения факторного анализа в психологических исследованиях на современном этапе связана с широким внедрением компьютеров, что делает возможным проведение сложных факторно-аналитических вычислений с обработкой больших массивов данных.
Введение……………………………………………………………….…………..3
Глава 1. История развития и области применения факторного анализа………4
1.1. Области применения факторного анализа………...……………......7
Глава 2. Факторная матрица. Интерпретация факторов…. ………....……....11
2.1. Косоугольная система координат и факторы 2-го порядка……...17
Глава 3. Основные теории факторного анализа………...……………………18
Заключение……………………………………………………………………....21
Список литературы……………………………………………………………....23
Глава 2. Факторная матрица. Интерпретация факторов.
Факторный
анализ – это ветвь математической
статистики. Его цели, как и цель
других разделов математической статистики,
заключается в разработке моделей,
понятий и методов, позволяющих
анализировать и
Одной из наиболее типичных форм представления экспериментальных данных является матрица, столбцы которой соответствуют различным параметрам, свойствам, тестам и т.п., а строки – отдельным объектам, явлениям, режимам, описываемым набором конкретных значений параметров. На практике размеры матрицы оказываются достаточно большими: так, число строк этой матрицы может колебаться от нескольких десятков до нескольких сотен тысяч (например, при социологических обследованиях), а число столбцов – от одного – двух до нескольких сотен. Непосредственный, “визуальный”, анализ матриц такого размера невозможен, поэтому в математической статистике возникло много подходов и методов, предназначенных для того, чтобы “сжать” исходную информацию, заключенную в матрице, до обозримых размеров, извлечь из исходной информации наиболее “существенное”, отбросив “второстепенное”, “случайное” [7].
При
анализе данных, представленных в
форме матрицы, возникают два
типа задач. Задачи первого типа имеют
целью получить “короткое описание”
распределения объектов, а задачи
второго – выявить
Следует иметь в виду, что основной стимул для появления указанных задач заключается не только и не столько в желании коротко закодировать большой массив чисел, а в значительно более принципиальном обстоятельстве, имеющем методологический характер: коль скоро удалось коротко описать большой массив чисел, то можно верить, что вскрыта некая объективная закономерность, обусловившая возможность короткого описания; а ведь именно поиск объективных закономерностей и является основной целью, ради которой, как правило, и собираются данные.
Упомянутые подходы и методы обработки матрицы данных отличаются тем, какого типа задачи обработки данных они предназначены решать, и тем, к матрицам какого размера они применимы.
Что же касается проблемы короткого описания связей между параметрами при среднем числе этих параметров, то в данном случае соответствующая корреляционная матрица содержит несколько десятков или сотен чисел и сама по себе она еще не может служить “коротким описанием” существующих связей между параметрами, а должна с этой целью подвергнуться дальнейшей обработке.
Факторный
анализ как раз и представляет
собой набор моделей и методов,
предназначенных для “сжатия” информации,
содержащейся в корреляционной матрице.
В основе различных моделей факторного
анализа лежит следующая
Факторный анализ, независимо от используемых методов, начинается с обработки таблицы интеркорреляций, полученных на множестве тестов, известной как корреляционная матрица, а заканчивается получением факторной матрицы, т.е. таблицы, показывающей вес или нагрузку каждого из факторов по каждому тесту. Таблица 1 представляет собой гипотетическую факторную матрицу, включающую всего два фактора.
Факторы перечисляются в верхней строке таблицы от более значимого к менее значимому, а их веса в каждом из 10 тестов даны в соответствующих столбцах.
Таблица 1
Гипотетическая
факторная матрица
|
Оси координат. Принято представлять факторы геометрически в виде осей координат, относительно которых каждый тест может быть изображен в виде точки. Рис. 1 поясняет эту процедуру. На этом графике каждый из 10 тестов, приведенных в табл.1, отображен в виде точки относительно двух факторов, которые соответствуют осям I и II. Так, тест 1 представлен точкой с координатами 0,74 по оси I и 0,54 по оси II. Точки, представляющие остальные 9 тестов, построены аналогичным способом, с использованием значений весов из табл. 1.
Следует
заметить, что положение осей координат
не фиксировано данными. Исходная таблица
корреляций определяет лишь положение
тестов (т.е. точек на рис. 1) относительно
друг друга. Те же точки можно нанести
на плоскость с любым положением координатных
осей. По этой причине при проведении факторного
анализа обычно вращают оси до тех пор,
пока не получают наиболее приемлемого
и легко интерпретируемого отображения.
Рис.
1. Гипотетическое факторное отображение,
показывающее веса двух групповых факторов
по каждому из 10 тестов.
На рис. 1 полученные после вращения оси I’ и II’ показаны пунктирными линиями. Это вращение выполнено в соответствии с предложенными Терстоуном критериями положительного многообразия и простой структуры. Первый предполагает вращение осей до положения, при котором исключаются все значимые отрицательные веса. Большинство психологов считают отрицательные факторные нагрузки логически несоответствующими тестам способностей, так как такая нагрузка означает, что чем выше оценка индивидуума по специфическому фактору, тем ниже будет его результат по соответствующему тесту. Критерий простой структуры, в сущности, означает, что каждый тест должен иметь нагрузки по как можно меньшему числу факторов [7].
Выполнение обоих критериев дает факторы, которые можно наиболее легко и однозначно интерпретировать. Если тест имеет высокую нагрузку по одному фактору и не имеет значимых нагрузок по другим факторам, мы можем кое-что узнать о природе этого фактора, изучив содержание данного теста. Напротив, если тест имеет средние или низкие нагрузки по шести факторам, то он мало что скажет нам о природе любого из них.
На
рис. 1 хорошо видно, что после вращения
осей координат все вербальные тесты
(1-5) располагаются вдоль или очень
близко к оси I’, а числовые тесты
(6-10) тесно группируются вокруг оси II’.
Новые факторные нагрузки, измеренные
относительно повернутых осей, приведены
в табл. 2. Факторные нагрузки в табл. 2 не
имеют отрицательных значений, за исключением
пренебрежительно малых величин, явно
относимых к ошибкам выборки. Все вербальные
тесты имеют высокие нагрузки по фактору
I’ и практически нулевые – по фактору
II’. Числовые тесты, напротив, имеют высокие
нагрузки по фактору II’ и пренебрежимо
низкие – по фактору I’. Таким образом,
вращение координатных осей существенно
упростило идентификацию и называние
обоих факторов, а также описание факторного
состава каждого теста. На практике число
факторов часто оказывается больше двух,
что, разумеется, усложняет их геометрическое
представление и статистический анализ,
но не изменяет существа рассмотренной
процедуры.
Таблица 2
Факторная
матрица после вращения
|
Некоторые
исследователи руководствуются
теоретической моделью как
Интерпретация факторов. Получив после процедуры вращения факторное решение (или, проще говоря, факторную матрицу), мы можем переходить к интерпретации и наименованию факторов. Этот этап работы скорее требует психологической интуиции, нежели статистической подготовки. Чтобы понять природу конкретного фактора, нам ничего не остается, как изучить тесты, имеющие высокие нагрузки по этому фактору, и попытаться обнаружить общие для них психологические процессы. Чем больше оказывается тестов с высокими нагрузками по данному фактору, тем легче раскрыть его природу. Из табл. 2, к примеру, сразу видно, что фактор I’ вербальный, а фактор II’ числовой. Приведенные в табл. 2 факторные нагрузки отображают к тому же корреляцию каждого теста с фактором [8].
2.1. Косоугольная система координат и факторы 2-го порядка.
Изображенные на рис. 1 оси называются ортогональными, так как они строго перпендикулярны друг другу. Иногда кластеры тестов располагаются таким образом, что лучшего соответствия используемым критериям удается достичь при использовании облических ( косоугольных) осей. В таком случае уже сами факторы коррелируют друг с другом. Одни исследователи утверж-дали, что использование ортогональных (некоррелирующих) факторов всегда предпочтительнее, поскольку такие факторы дают более простую и четкую картину взаимосвязи черт. Другие настаивают на том, что косоугольную систему координат следует использовать всякий раз, когда она лучше соответствует изучаемым данным, поскольку большинство имеющих ясный физический смысл категорий и не должны быть независимыми. Очевидный пример – рост и вес. Несмотря на высокую корреляцию между собой, они оказались весьма полезными категориями при оценке телосложения.
Когда факторы коррелируют между собой, существующие между ними интеркорреляции можно подвергнуть тому же статистическому анализу, который мы применяем к интеркорреляциям между тестами. Иными словами, у нас есть возможность “факторизовать факторы” и получить факторы второго порядка. Этот способ обработки данных был использован в ряде исследований таких переменных, как способности и черты личности. В некоторых исследованиях с использованием тестов способностей был получен единственный общий фактор второго порядка. Как правило, американские исследователи, применяющие факторный анализ, начинают с объяснения как можно большей части общей дисперсии групповыми факторами и только затем выявляют общий фактор как фактор второго порядка, если данные подтверждают его наличие. У английских психологов, напротив, принято начинать с общего фактора, которому приписывается основная доля общей дисперсии, а затем возвращаться к групповым факторам для объяснения остаточной корреляции. Эта разница в методиках является следствием теоретических различий.
На протяжении более полувека предпринимались многочисленные попытки с помощью статистических методов факторного анализа понять природу и организацию способностей, связанных с разнообразной человеческой деятельностью. Тем не менее эти методы до сих пор остаются наиболее тесно связанными с изучением когнитивных способностей, или “интеллекта”, направлением, в рамках которого и зародился факторный анализ. Рассмотрим лишь некоторые широко известные теории интеллекта, выбор которых обусловлен их воздействием на конструирование и использование тестов.