Автор работы: Пользователь скрыл имя, 26 Декабря 2011 в 15:37, курсовая работа
Существуют различные типы данных в языке Паскаль. Рассмотрим производные типы. Каждое значение любого из этих типов в общем случае представляет собой уже нетривиальную структуру, т.е. обычно это значение имеет более чем одну компоненту. При этом каждая компонента структуры может быть как отдельным данным, так и в свою очередь нетривиальной структурой, т.е, значением любого из производных типов.
Введение…………………………………………………………………………….3
1. Виды массивов…………………………………………………………………...6
1.1. Одномерные массивы……………………………………………………….6
1.2. Примеры задач………………………………………………………………7
1.3. Двумерные массивы………………………………………………………...8
1.4. Пример задачи……………………………………………………………..15
2. Сортировка, параметры-массивы и параметры–строки …………………......17
2.1. Метод простых обменов (Пузырьковая сортировка)……………………17
2.2. Сортировка простым выбором……………………………………………18
2.3. Сортировка простым включением (Метод вставки и сдвига)…………..19
2.4. Параметры-массивы и параметры-строки………………………………20
Заключение………………………………………………………………………...24
Глоссарий…………………………………………………………………………26
Список использованных источников
Приложения
Версия шаблона | 2.1 |
Филиал | ЦДОТ г. Дущанбе |
Вид работы | Курсовая работа |
Название дисциплины | Программирование на языках высокого уровня |
Тема | Массивы |
Фамилия студента | Курбанов |
Имя студента | Дилшод |
Отчество студента | Нарзуллоевич |
№ контракта | 23200100601016 |
Введение……………………………………………
1.
Виды массивов…………………………………………………………
1.1. Одномерные массивы……………………………………………………….6
1.2. Примеры задач………………………………………………………………7
1.3. Двумерные массивы………………………………………………………..
1.4. Пример задачи…………………………………………………………….
2. Сортировка, параметры-массивы и параметры–строки …………………......17
2.1. Метод простых обменов (Пузырьковая сортировка)……………………17
2.2. Сортировка простым выбором……………………………………………18
2.3. Сортировка простым включением (Метод вставки и сдвига)…………..19
2.4. Параметры-массивы и параметры-строки………………………………20
Заключение………………………………………
Глоссарий…………………………………………
Список использованных источников
Приложения
Существуют различные типы данных в языке Паскаль. Рассмотрим производные типы. Каждое значение любого из этих типов в общем случае представляет собой уже нетривиальную структуру, т.е. обычно это значение имеет более чем одну компоненту. При этом каждая компонента структуры может быть как отдельным данным, так и в свою очередь нетривиальной структурой, т.е, значением любого из производных типов. Таким образом, значения производных типов в общем случае имеют иерархическую структуру, на самом нижнем уровне которой фигурируют только отдельные данные. Этим компонентам нижнего уровня могут присваиваться значения и они могут присутствовать в выражениях, как и значения переменных скалярного типа. Данные, являющиеся значениями скалярных типов, занимают сравнительно мало места в памяти ЭВМ. Отдельная литера, например, обычно представляется одним байтом (8 двоичных разрядов). Для чисел различны типов в зависимости от реализации отводят несколько байтов. Данные же, составляющие значение производного типа, обычно занимают значительный объем памяти ЭВМ. В связи с этим при написании программ для ЭВМ, имеющих сравнительно небольшой объем памяти, встает проблема экономного ее использования. В паскале предусмотрена возможность указания транслятору на необходимость экономного представления значений производных типов. Для этого задание производного типа необходимо начать со служебного слова packed , что означает упакованный. Но введя требование на упакованность данных, необходимо четко представлять себе, что, с одной стороны, это требование не всегда может быть выполнено транслятором (если, например, более экономного представления, чем обычное неупакованное представление для данных этого типа, в ЭВМ просто не существует). А с другой стороны, если оно выполнимо, то приводит к увеличению времени исполнения программы. Поясним на примере, за счет чего это происходит. Как уже указывалось ранее, одна литера занимает один байт. Машинная ячейка памяти, с которой работают команды ЭВМ, в общем случае состоит из нескольких байтов. Поэтому, если в ячейку поместить одну литеру, го большая ее часть не будет использована. На самом деле в одну ячейку можно поместить несколько литер (упакованное представление). Но тогда каждый раз, когда необходимо выполнить действие над отдельной литерой, придется производить выделение этой литеры из ячейки (распаковку литеры из ячейки). Аналогично, при записи отдельной литеры в память машины придется определять то место в ячейке, куда ее необходимо поместить, и заносить литеру именно туда, не изменяя содержимое остальных разрядов (запаковка литеры в ячейку). Такие дополнительные действия могут занимать значительную часть общего времени работы программы. Поэтому принимать решение об использовании упакованного представления данных должен всегда программист, в зависимости от конкретных условий и целей, которые он преследует. Итак, значения производных типов могут быть представлены в памяти ЭВМ в упакованном и неупакованном виде. Упакованное представление требует, вообще говоря, меньшего объема памяти, но замедляет процесс выполнения программы. Мы рассмотрим наиболее употребительный производный тип, а именно регулярный тип. Значение регулярного типа обычно называют массивом. Итак, массив — это упорядоченный набор фиксированного количества некоторых значений (компонент массива). Все компоненты должны быть одного и того же типа, который называют типом компонент или базовым (для массива) типом.
Тип
данных Массив позволяет одному идентификатору
задать несколько значений, которые отличаются
порядковым номером. Номер элемента массива
указывается после идентификатора в квадратных
скобках {M[5] – пятый элемент массива М}.
При описании массива указывается диапазон
номеров элементов массива и тип, к которому
относится каждый его элемент. Массивы
могут быть одно-, двух- и многомерными.
Пример описания и заполнения элементов массива.
Var {описание массивов}
M: array [1..5] of integer; {одномерный массив М с номерами элементов от 1 до 5, состоящий из целых чисел}
M1: array [2..3,11..15] of char; {двумерный массив М1 с номерами строк от 2 до 3, с номерами столбцов от 11 до 15, состоящий из символов}
Begin {заполнение массива}
М[2]:=100; {второму элементу численного массива М присвоено значение 100}
М1[2,3]:=’d’; {элементу второй строки и третьего столбца символьного двухмерного массива М1 присвоено значение ’d’}
End.
1.1 Одномерные массивы
Каждому
используемому в программе
аrrау
[(тип индекса)] оf <тип компонент>
,где <тип компонент> — имя или задание
типа.
1.2 Пример задачи
Дан линейный массив целых чисел. Подсчитать, сколько в нем различных чисел.
{Подсчет количества различных чисел в линейном массиве}.
ИДЕЯ РЕШЕНИЯ: заводим вспомогательный массив, элементами которого являются логические величины (False - если элемент уже встречался ранее, True - иначе)}
Program Razlichnye_Elementy;
Var I, N, K, Kol : Integer;
A : Array [1..50] Of Integer;
Lo : Array [1..50] Of Boolean;
Begin
Write('Введите количество элементов массива: '); ReadLn(N);
FOR I := 1 TO N DO
Begin
Write('A[', I, ']='); ReadLn (A[I]);
Lo[I] := True; {Заполняем вспомогательный массив значениями True}
End;
Kol
:= 0; {переменная, в которой будет
храниться количество
FOR I := 1 TO N DO
IF Lo[I] THEN
Begin
Kol := Kol + 1;
FOR K := I TO N DO
{Во
вспомогательный массив
Lo[K] := (A[K] <> A[I]) And Lo[K];
End;
WriteLn('Количество различных чисел: ', Kol)
END.
Тест:
N = 10; элементы массива - 1, 2, 2, 2, -1, 1, 0, 34,
3, 3. Ответ: 6.
1.3 Двумерные массивы
Двумерный массив (прямоугольная таблица (матрица, набор векторов)) - это пример массива, в котором элементы нумеруются двумя индексами.
В качестве номера (индекса) элемента массива используется выражение порядкового типа (чаще integer).
Двумерным массивом называется таблица, состоящая из строк и столбцов. Для описания массива используются два индекса.
А11 А12 А13 … А1m
A21 A22 A23 ... А2m
... ... ... ... ...
... ... ... ... ...
... ... ... ... ...
An1 An2 An3 ... Anm
Описание массива
Способ 1. В разделе описания переменных
var
ИмяМассива:
array [Верх.Гр.1..Ниж.Гр.1,Верх.Гр.
Способ 2. В разделе описания типов
ИмяМассива:
array [Верх.Гр.1..Ниж.Гр.1,Верх.Гр.
Способ 3. В разделе описания констант
const
ИмяМассива:
array[1..3,1..3] of real=((1.2,2.4,0.4),(0.045,-0.
Заполнение массива данными (ввод элементов)
Массив, описанный как типизированная константа, уже содержит данные. Массивы, объявленные в разделе описания переменных, необходимо заполнить данными, прежде чем выполнять с ними какие-либо действия.
Значения элементов массива также можно задать следующими способами: при вводе данных с клавиатуры:
write('Введите количество строк и столбцов');
readln(n,m);
for i:=1 to n do
for j:=1 to m do
begin
write('a[',i,',',j,']=');
{Можно эту строчку в
readln(a[i,j]);
end;
с помощью датчика случайных чисел:
randomize;
writeln('Введите
количество элементов массива')
readln(n);
for i:=1 to n do
begin
a[i]:=random(50);
writeln('a[',i,',',j,']='
end;
присваением заданных значений (например по формуле i*i/i+2):