История криптографии

Автор работы: Пользователь скрыл имя, 17 Сентября 2011 в 22:36, контрольная работа

Краткое описание

В настоящее время проблема защиты информации стоит остро, как никогда ранее. Основные причины это распространение сети Интернет, глобальная компьютеризация общества и развитие технологий на основе компьютера во всех сферах жизнедеятельности человечества. В связи с этим, пришла насущная необходимость в сохранении конфиденциальности хранящихся и передаваемых объемов информации. Особенно это актуально для Российского общества, которое стремительно осваивает новые технологии и остро нуждается в защите от кибер-преступников.

Содержание работы

Введение ………………………………………………………………….... 3


1.Общие сведения о криптографии……………………………………….... 4


2.Симметричные и асимметричные системы…………………………..…. 7


3. Криптография и криптоанализ………………………………………........8


4. История криптографии……………………………………………….…. 10


5. Квантовая криптография…………………………………………….……28


Заключение……………………………………………………………….…..31


Примечания…………………………………………………………………. 32


Список литературы и интернет – ресурсов………………………………...36

Содержимое работы - 1 файл

история криптографии ИТУ.doc

— 475.00 Кб (Скачать файл)

Наибольший интерес  с точки зрения современной криптографии представляют лекции "Методы раскрытия шифров с длинной связной гаммой" и "Индекс совпадения и его применения в криптографии". В первой из них предлагается бесключевой метод чтения при использовании неравновероятной гаммы. Во второй излагается так называемый к-тест, позволяющий выяснить, можно ли подписать друг под другом две (или более) криптограммы (или отрезки криптограмм) так, чтобы буквы в каждой колонке оказались бы зашифрованы одинаковыми знаками гаммы.

Поступив в 1921 г. на службу в войска связи, У. Фридман успешно применял свои методы для вскрытия машинных шифров. Когда была создана служба радиоразведки, У.Фридман стал ее главой и продолжил свои разработки, самой значимой из которых было вскрытие японской пурпурной шифрмашины.  В  1929 г. он стал широко известен как один из ведущих криптографов мира, когда "Британская энциклопедия" поместила его статью "О кодах и шифрах". С основными результатами У. Фридмана можно познакомиться в четырехтомнике "Военная криптография".

Выдающиеся результаты в применении математических методов в криптографии принадлежат Клоду Шеннону. К. Шеннон получил образование по электронике и математике в Мичиганском университете, где и начал проявлять интерес к теории связи и теории шифров. В 1940 г. он получил степень доктора по математике, в течение года обучался в Принстонском институте усовершенствования, после чего был принят на службу в лабораторию компании "Bell Telephone".

К 1944 г. К. Шеннон завершил разработку теории секретной  связи. В 1945 г. им был подготовлен  секретный доклад "Математическая теория криптографии", который был рассекречен в 1949 г. и издан.

В данной работе излагается теория так называемых секретных систем, служащих фактически математической моделью шифров. Помимо основных алгебраических (или функциональных) свойств шифров, постулируемых в модели, множества сообщений и ключей наделяются соответствующими априорными вероятностными свойствами, что позволяет формализовать многие постановки задач синтеза и анализа шифров. Так, и сегодня при разработке новых классов шифров широко используется принцип Шеннона рассеивания и перемешивания, состоящий в использовании при шифровании многих итераций "рассеивающих" и "перемешивающих" преобразований. Его работы стимулировали бурный рост научных исследований по теории информации и криптографии.

В работах К. Шеннона по исследованию свойств  языка важную роль играет величина удельной энтропии Н на букву текста, другими словами, среднее количество информации, передаваемой буквой открытого текста. Предложенный им метод экспериментов с угадыванием очередной буквы английского текста по предыдущим буквам оказался неэффективным при получении оценок величины Н для других языков. Метод "отгадывания" развил в своих работах А. Н. Колмогоров. Достаточно точные приближения параметра Н для русского и французского языков получил Б. Б. Пиотровский. Он указал на существенную разницу между значениями Н для текстов различного характера (литературных, деловых, разговорной речи).

 В своих  фундаментальных работах 60-х годов  А. Н. Колмогоров подошел к определению количества информации с учетом смыслового содержания текста, что позволило уточнить приближение величины Н для литературных текстов. Необходимо также отметить, что еще задолго до К. Шеннона частотные характеристики языка изучал выдающийся русский ученый А. А. Марков. Сегодня часто используются так называемые марковские модели открытых текстов, учитывающие зависимости букв текста от предыдущих букв.

Еще одна страница в истории криптографии XX в. посвящена телефонным шифраторам, которые были разработаны в 30-х годах и стали широко использоваться во время второй мировой войны. В России разработка телефонного шифратора велась под руководством В.А.Котельникова, ставшего впоследствии академиком, ученым с мировым именем. Ему принадлежит знаменитая теорема дискретизации (или теорема отсчетов), лежащая в основе теории цифровой обработки сигналов.

Сама идея телефонного  шифратора была запатентована Д. Х. Роджерсом еще в 1881 г., спустя пять лет после изобретения Беллом телефона. Идея состояла в передаче телефонного сообщения по нескольким (в простейшем случае — по двум) цепям поочередными импульсами в некоторой быстро изменяющейся последовательности. Предлагалось разнести такие линии на значительное расстояние друг от друга с тем, чтобы устранить возможность подключения сразу ко всем одновременно. Подключение же к одной из них позволяло бы слышать лишь отдельные неразборчивые сигналы.

В более поздних  разработках предлагались различные  преобразования непосредственно самой речи. Звуки речи преобразуются телефоном в непрерывный электрический сигнал, который с помощью соответствующих устройств изменяется шифратором по законам электричества. К числу возможных изменений относятся: инверсия, смещение, или деление диапазона частот, шумовые маскировки, временные перестановки частей сигнала, а также различные комбинации перечисленных преобразований. Естественно, каждое из указанных преобразований производится под управлением ключа, который имеется у отправителя и получателя. Наиболее просто реализуемым являлось преобразование инверсии. Сложнее реализовались временные перестановки. Для их осуществления речевой сигнал в некоторый промежуток времени предварительно записывался на магнитофонной ленте. Запись делилась на отрезки длительностью в доли секунд. Отрезки с помощью нескольких магнитных головок разносились и перемешивались, в результате чего в канале слышалась хаотическая последовательность звуков. Использовалась также движущаяся магнитная головка, которая в зависимости от направления движения считывала сигналы быстрее или медленнее, чем они были записаны на ленте. В результате тон сигналов становился выше или ниже обычного, в канале быстро чередовались высокие и низкие звуки, не воспринимаемые ухом. Следует отметить, что одной из самых сложных проблем, которые возникали при разработке телефонных шифраторов, была проблема узнавания восстановленной после расшифровывания речи.

В США первый телефонный шифратор, под названием  «A3», был принят в эксплуатацию в 1937 г. Именно он доставил президенту Рузвельту известие о начале второй мировой войны утром 1 сентября 1939 г. по вызову американского посла в Париже. «A3» осуществлял инверсию и перестановку 5 поддиапазонов частот.

В настоящее  время аналоговая телефония уступает место цифровой телефонии. Тем самым и многие технические проблемы, связанные с криптографическими преобразованиями аналоговых сигналов, отпадают за ненадобностью. Дело в том, что оцифрованный сигнал является дискретным и, следовательно, к нему можно применить хорошо разработанную надежную "дискретную криптографию".

Во второй половине XX в., вслед за развитием элементной базы вычислительной техники, появились  электронные шифраторы, разработка которых потребовала серьезных  теоретических исследований во многих областях прикладной и фундаментальной математики, в первую очередь алгебре, теории вероятностей и математической статистике. Сегодня именно электронные шифраторы составляют подавляющую долю средств шифрования. Они удовлетворяют все возрастающим требованиям по надежности и скорости шифрования. Прогресс в развитии вычислительной техники сделал возможными программные реализации криптографических алгоритмов, которые все увереннее вытесняют во многих сферах традиционные аппаратные средства.

 В семидесятых  годах произошло два события, серьезно повлиявших на дальнейшее развитие криптографии. Во-первых, был принят (и опубликован!) первый стандарт шифрования данных (DES), "легализовавший" принцип Керкгоффса в криптографии. Во-вторых, после работы американских математиков У. Диффи и М. Хеллмана  родилась "новая криптография"— криптография с открытым ключом. Оба этих события были рождены потребностями бурно развивающихся средств коммуникаций, в том числе локальных и глобальных компьютерных сетей, для защиты которых потребовались легко доступные и достаточно надежные криптографические средства. Вслед за идеей Диффи и Хеллмана, связанной с гипотетическим понятием однонаправленной (или односторонней) функции с секретом, появились "кандидат" на такую функцию и реально осуществленная шифросистема RSA с открытым ключом. Такая система была предложена в 1978 г. Райвестом, Шамиром и Адлеманом. Парадоксальным казалось то, что в RSA для зашифровывания и расшифровывания используются разные ключи, причем ключ зашифровывания может быть открытым, то есть всем известным.

  Криптография  стала широко востребоваться  не только в военной, дипломатической,  государственной сферах, но также в коммерческой, банковской и других сферах. 

5. Квантовая криптография.

 Квантовые  компьютеры и связанные с ними технологии в последнее время становятся все актуальнее. Исследования в этой области не прекращаются вот уже десятилетия, и ряд революционных достижений налицо. Квантовая криптография - одно из них. Технология квантовой криптографии крайне сложна.

 В 1984 г. Ч. Беннет (фирма IBM) и Ж. Брассард (Монреальский университет) предположили, что квантовые состояния (фотоны) могут быть использованы в криптографии для получения фундаментально защищенного канала. Они предложили простую схему квантового распределения ключей шифрования, названную ими ВВ84. Эта схема использует квантовый канал, по которому пользователи (пусть это будут Алиса и Боб) обмениваются сообщениями, передавая их в виде поляризованных фотонов, как показано на рис.1 .

 Подслушивающий  злоумышленник может попытаться производить измерение этих фотонов, но, как сказано выше, он не может сделать это, не внося в них искажений. Алиса и Боб используют открытый канал для обсуждения и сравнения сигналов, передаваемых по квантовому каналу, проверяя их на возможность перехвата. Если они при этом ничего не выявят, они могут извлечь из полученных данных информацию, которая надежно распределена, случайна и секретна, несмотря на все технические ухищрения и вычислительные возможности, которыми располагает гипотетический злоумышленник.

 В 1989 г.  все те же Беннет и Брассард  в Исследовательском центре компании IBM построили первую, работающую  квантово-криптографическую систему.  Она состояла из квантового  канала (рис. 8), содержащего передающий аппарат Алисы на одном конце и приемный аппарат Боба на другом, размещенных на оптической скамье длиной около 1 м, в светонепроницаемом кожухе размерами 1,5х0,5х0,5 м. Он представлял собой свободный воздушный канал длиной около 32 см. Во время функционирования макет управлялся от персонального компьютера, который содержал программное представление пользователей Алисы и Боба, а также злоумышленника.

Рисунок 8 - Так в квантово-оптическом канале связи распространяются одиночные фотоны. 

 Надежность  сохранения в тайне передаваемых  сообщений в значительной степени  зависит от интенсивности используемых  для передачи вспышек света.  Слабые вспышки затрудняют перехват  сообщений, но приводят к увеличению  числа ошибок в измерении правильной  поляризации у законного пользователя. Усиление же интенсивности вспышек облегчает возможность перехвата путем расщепления исходного пучка света или одиночного фотона на два: одного, направляемого законному получателю, и другого, анализируемого злоумышленником. Алиса и Боб могут использовать для исправления ошибок коды, исправляющие ошибки, обсуждая результаты кодирования по открытому каналу. Схема работы квантово-оптической криптографической системы (КОКС) показана на рис.9.

Рисунок 9 - Первая квантово-криптографическая  схема.

 
Система состоит из квантового канала и специального оборудования на обоих  концах схемы. Однако при этом часть  информации может попасть к злоумышленнику. Тем не менее, Алиса и Боб, зная интенсивность вспышек света и количество обнаруженных и исправленных ошибок, могут оценить количество информации, попадающее к злоумышленнику.

Самым важным достижением  в области квантовой криптографии можно считать то, что была доказана возможность существенного повышения скоростей передачи - до 1 Мбит/с и более. Это достигается путем уплотнения данных по длинам волн в волоконно-оптической системе. Разделение каналов по длинам волн в одной волоконно-оптическом канале связи применительно к случаю КОКС позволяет реализовать как последовательную, так и одновременную работу и открытого высокоскоростного, и секретного квантового каналов связи. Одновременно с этим можно говорить и о повышении скорости передачи информации по КОКС при использовании разделения каналов. Это может быть достигнуто за счет одновременной организации нескольких квантовых каналов по одной общей среде передачи - одному оптическому волокну. В настоящее время в одном стандартном оптическом волокне можно организовать около 50 каналов. Последние экспериментальные схемы подтверждают, что при небольшой доработке системы данного вида будут главенствовать среди КОКС.

С учетом известных  экспериментальных результатов  по созданию КОКС можно прогнозировать в ближайшие годы достижение следующих параметров:

1. Эффективная  скорость передачи информации  по квантовому каналу при количестве  ошибок, не превышающем 4%, около  50 Мбит/с.

2. Максимальная  длина квантового оптического  канала связи - 50 км.

3. Количество  подканалов при разделении по длинам волн - 8-16.

Заключение. 

Появление в  середине двадцатого столетия первых электронно-вычислительных машин кардинально  изменило ситуацию в области шифрования (криптографии). С проникновением компьютеров  в различные сферы  жизни возникла принципиально новая отрасль - информационная индустрия.

В 60-х и частично в 70-х годах проблема защиты информации решалась достаточно эффективно применением  в основном организационных мер. К ним относились, прежде всего  режимные мероприятия, охрана, сигнализация и простейшие программные средства защиты информации. Эффективность использования указанных средств достигалась за счет концентрации информации на вычислительных центрах, как правило, автономных, что способствовало обеспечению защиты относительно малыми средствами. "Рассосредоточение" информации по местам ее хранения и обработки, чему в немалой степени способствовало появление в огромных количествах дешевых персональных компьютеров и построенных на их  основе локальных и глобальных национальных и транснациональных сетей ЭВМ, использующих спутниковые каналы связи, создание высокоэффективных систем  разведки и добычи информации, обострило ситуацию с защитой информации.

Информация о работе История криптографии