Биполярные транзисторы

Автор работы: Пользователь скрыл имя, 15 Мая 2012 в 18:12, курсовая работа

Краткое описание

Биполярным транзистором называется электропреобразовательный полупроводниковый прибор, имеющий в своей структуре два взаимодействующих p-n-перехода и три внешних вывода, и предназначенный, в частности, для усиления электрических сигналов.

Содержание работы

1. Введение………………………………………………………………………...2

2. Режимы работы транзистора………………………………………………......4

3. Схемы включения биполярного транзистора………………………………...5

4. Принцип работы биполярного транзистора………………………………......6

5. Физические процессы в биполярном транзисторе…………………………...9

6. Расчет токов биполярного транзистора……………………………………...12

7. Статические характеристики биполярного транзистора…………………...22

8. Влияние температуры на работу биполярного транзистора……………….29

9. Пробой биполярного транзистора…………………………………………...34

10. Заключение…………………………………………………………………..37

11. Список литературы……………………………………………………….....38

Содержимое работы - 1 файл

биполярные транзисторы.doc

— 933.00 Кб (Скачать файл)

 

Семейство выходных характеристик n-p-n-транзистора приведена на рис.21. Выражение дляидеализированной выходной характеристики в активном режиме имеет вид: iК = · iЭ+ IКБ0. (3.36)

 

 

В соответствие с этим выражением ток коллектора определяется только током эмиттера и не зависит от напряжения uКЭ. Реально (см. рис.21) имеет место очень небольшой рост iК при увеличении обратного напряжения uКБ, связанный с эффектом Эрли. В активном режиме характеристики практически эквидистантны (расположены на одинаковом расстоянии друг от друга), лишь при очень больших токах эмиттера из-за уменьшения коэффициента передачи тока эмиттера  эта эквидистантность нарушается, и характеристики несколько приближаются друг к другу. При iЭ= 0 в цепи коллектора протекает тепловой ток ( iК= IКБ0). В режиме насыщения на коллекторный переход подается прямое напряжение uКБ, большее порогового значения, открывающее коллекторный переход. В структуре транзистора появляется инверсный сквозной поток электронов, движущийся из коллектора в эмиттер навстречу нормальному сквозному потоку, движущемуся из эмиттера в коллектор. Инверсный поток очень резко увеличивается с ростом  uКБ. , в результате чего коллекторный ток уменьшается и очень быстро спадает до нуля - см. рис.21.

Статические характеристики в схеме ОЭ

В схеме с общим эмиттером (см. рис. 3.3,б) входным током является ток базы iБ, а выходным - ток коллектора iК, соответственно, входным напряжением является напряжение uБЭ, а выходным - напряжение uКЭ.

Входная характеристика в схеме ОЭ представляет собой зависимость

 

 

Однако, реально в справочниках приводится обратная зависимость

Семейство входных характеристик кремниевого n-p-n-транзистора приведено на рис.22. Выражение для идеализированной входной характеристики в активном режиме имеет вид:

, (3.37)

 

где uБЭ - прямое напряжение на эмиттерном переходе. Так же, как и в схеме ОБ, входная характеристика имеет вид, характерный для прямой ветви ВАХ p-n-перехода (см. рис.22). однако, входной ток iБ здесь в (  + 1) раз меньше, чем в схеме ОБ. Экспоненциальный рост тока базы при увеличении uБЭ связан с увеличением инжекции электронов в базу и соответствующим усилением их рекомбинации с дырками. В выражении (3.37) отсутствует зависимость тока iБ от напряжения uКЭ. Реально эта зависимость имеет место, она связана с эффектом Эрли. С ростом обратного напряжения на коллекторном переходе сужается база транзистора, в результате чего уменьшается рекомбинация носителей в базе и, соответственно, уменьшается ток базы. Снижение тока базы с ростом uКЭ отражается небольшим смещением характеристик в область больших напряжений uБЭ - см. рис. 3.22.При uКЭ< uБЭ открывается коллекторный переход, и транзистор переходит в режим насыщения. В этом режиме вследствие двойной инжекции в базе накапливается очень большой избыточный заряд электронов, их рекомбинация с дырками усиливается, и ток базы резко возрастает - см. рис.22.

 

 

Выходная характеристика в схеме ОЭ представляет собой зависимость

 

Семейство выходных характеристик n-p-n-транзистора приведено на рис.23. Выражение для идеализированной выходной характеристики в активном режиме имеет вид:

 

. (3.38)

 

Особенностью выходной характеристики транзистора в схеме с общим эмиттером по сравнению с характеристикой в схеме с общей базой, является то, что она целиком лежит в первом квадранте. Это связано с тем, что в схеме ОЭ напряжение uКЭ распределяется между обоими переходами, и при uКЭ< uБЭ напряжение на коллекторном переходе меняет знак и становится прямым, в результате транзистор переходит в режим насыщения при uКЭ >0 (cм. рис.23). В режиме насыщения характеристики сливаются в одну линию, то есть ток коллектора не зависит от тока базы. Так же, как и в схеме ОБ, идеализированная характеристика в активном режиме не зависит от напряжения uКЭ. Реально имеет место заметный рост тока iК с ростом uКЭ (см. рис.23), связанный с эффектом Эрли. Этот рост выражен значительно сильнее, чем в схеме ОБ в связи с более резкой зависимостью от напряжения на коллекторном переходе коэффициента передачи тока базы  по сравнению с коэффицентом передачи тока эмиттера  . Также более резкой зависимостью  от тока эмиттера и, соответственно, от тока базы объясняется практическое отсутствие эквидистантности характеристик. При iБ=0 в цепи коллектора протекает ток iКЭ0=  iБЭ0.

Увеличение тока в  раз по сравнению со схемой ОБ объясняется тем, что в схеме ОЭ при iБ=0 и uКЭ >0 эмиттерный переход оказывается несколько приоткрыт напряжением uКЭ, и инжектируемые в базу электроны существенно увеличивают ток коллектора.

 

 

 

8. Влияние температуры на работу биполярного транзистора

 

Влияние температуры на работу биполярного транзистора обусловлено тремя физическими факторами: уменьшением потенциальных барьеров в переходах, увеличением тепловых токов переходов и увеличением коэффициентов передачи токов с ростом температуры.

Уменьшение потенциального барьера  К с ростом температуры также, как и в изолированном переходе, приводит к усилению инжекции, в результате чего увеличивается входной ток транзистора.

На рис..24 приведены входные характеристики транзистора в схеме с общей базой, полученные при различных температурах (заметим, что входные характеристики в схеме ОЭ при различных температурах выглядят аналогично и отличаются лишь масштабом по оси токов так как iК >>iБ. Как видно из рисунка 24, увеличение входного тока с ростом температуры эквивалентно смещению характеристики в сторону меньших входных напряжений. Это смещение описывается температурным коэффициентом напряжения , который составляет для кремниевых транзисторов  = - 3 мВ/град. В расчетах транзисторных схем часто используют кусочно-линейную аппроксимацию входных характеристик.

На рис.24,б приведены идеализированные аппроксимированные характеристики без учета влияния сопротивления тела базы rБ.

Как видно из рисунка при rБ =0 характеристики проходят вертикально и напряжение на переходе равно пороговому  - uЭБ = U*. Изменение этого напряжения с температурой также описывается коэффициентом  .

Увеличение тепловых токов переходов с ростом температуры, подробно рассмотренное в разделе 2, описывается приводимыми в справочниках температурными зависимостями токов IКБ0, IЭБ0.

 

 

Типовые зависимости токов IКБ0 и IЭБ0 от температуры для кремниевого маломощного транзистора приведены на рис.25.

 

 

Использование логарифмического масштаба по оси ординат позволило представить экспоненциальную зависимость токов от температуры в линейном виде. Как видно из рисунка, в рабочем интервале температур транзистора (-60  ...+ 80  C) токи IКБ0 и IЭБ0 могут изменяться на 1...2 порядка. Следует заметить, что отмеченный рост тепловых токов заметно сказывается на выходных характеристиках лишь германиевых транзисторов, что связано с относительно большой величиной самих тепловых токов. В кремниевых транзисторах тепловые токи очень малы, поэтому их изменение с температурой не оказывает заметного влияния на характеристики. Увеличение коэффициента передачи тока эмиттера  и тока базы  с ростом температуры обусловлено ростом времени жизни электронов в базе и соответствующим ослаблением их рекомбинации с дырками. На рис.26 приведены типичные температурные зависимости коэффициентов  и  , нормированных к значениям, полученным при комнатной температуре ( t =20  C). Из рисунка видно, что если изменение  с температурой выражено очень слабо (в рабочем интервале температур оно не превышает нескольких процентов), то изменение  может достигать нескольких сотен процентов.

 

Сказанное выше иллюстрируют приведенные на рис.27 выходные характеристики транзистора в схемах ОБ и ОЭ, полученные при различных температурах. Как видно из рисунка, увеличение температуры приводит к смещению (дрейфу) характеристик в сторону более высоких токов коллектора. При этом в схеме ОБ при фиксированном токе эмиттера  iК=   iЭ температурный дрейф характеристик выражен довольно слабо, что объясняется слабой температурной зависимостью коэффициента передачи тока эмиттера  - см. рис. 26. У характеристик для схемы ОЭ, снимаемых при iБ =const, в связи с сильной температурной зависимостью коэффициента передачи тока базы  температурный дрейф очень велик - изменение тока коллектора  iК=   iБ может достигать несколько десятков и даже сотен процентов. Температурная нестабильность характеристик транзистора в схеме ОЭ требует специальных мер по стабилизации рабочей точки. На рис.27 приведены три типовые схемы задания режима работы транзистора по постоянному току. В схеме, приведенной на рис 27,а внешние элементы задают ток базы

 

 

Отсюда можно записать выражение для расчета коллекторного тока:

 

. (3.39)

 

Оценим изменение тока IК при изменении температуры на 20  С. Будем полагать EК=10 В, RБ=100 кОм,  (20  С)=100, U*(20  С)=0.7В и IКЭ0(20  С)=5мкА, откуда IК(20  С )=100 · 10/10 5-100 · 0.7/10 5+5 · 10 -6= =9.305 мА. Будем также считать, что изменение  при изменении температуры на 20  С составляет 50%, изменение U* определяется коэффициентом  = -2 мВ/град , изменение IКЭ0 определяется температурой его удвоения T* = 5  С. Тогда несложно определить значения  , U* и IКЭ0 при t  =40  С:  (40  С) =1,5 ·100=150, U*(40  С)=0,7-20 ·2 ·10 -3=0,66 В и IКЭ0( 40  С)=2 4 ·5 ·10 -6=160 мкА. Тогда ток IК ( 40  С)=150·10/10 5-150 ·0,66/10 5+160·10 -6=14,17 мА, то есть ток IК изменился на 52,3 % и основной вклад в это изменение внес коэффициент передачи тока базы  . Расчет показывает, что эта схема обладает низкой температурной стабильностью. В схеме, приведенной на рис.28,б, внешние элементы задают ток эмиттера

 

и .

 

Таким образом, в этой схеме обеспечивается высокая температурная стабильность (как в схеме ОБ), правда достигается она за счет использования дополнительного источника питания. Следует заметить, что указанная схема представляет собой по переменному току - схему ОЭ, а по постоянному току - схему ОБ. Третья схема (см. рис.28,в) занимает промежуточное по термостабильности положение между двумя первыми схемами. В этой схеме фиксируется напряжение uБЭ и при рациональном выборе RБ1,RБ2 и RЭ температурная стабильность всего в 2 - 3 раза хуже, чем во второй схеме.

 

 

 

9. Пробой биполярного транзистора

 

Физические причины, вызывающие пробой переходов транзистора, те же, что и в полупроводниковом диоде . В то же время пробой переходов в транзисторах имеет определенную специфику, связанную с взаимодействием переходов и проявляющуюся главным образом в схеме с общим эмиттером, где напряжение uКЭ прикладывается к обоим переходам. В схеме ОБ напряжение лавинного пробоя коллекторного перехода UКБ0 проб близко к напряжению пробоя изолированного перехода. Эмиттерный переход, как правило, работает при прямом смещении и его пробивное напряжение не представляет интереса, однако следует иметь в виду, что из-за сильного легирования эмиттера напряжение пробоя эмиттерного перехода мало - несколько вольт. В схеме ОЭ условия возникновения лавинного пробоя очень сильно зависят от режима базовой цепи. В случае, когда ток базы не ограничен (сопротивление в цепи базы RБ 0) пробой коллекторного перехода происходит так же, как и в схеме ОБ, и возникает при том же пробивном напряжении на коллекторе UКБ0 проб. При фиксированном токе базы, когда базовая цепь питается от источника тока ( RБ  ), проявляется механизм положительной обратной связи, снижающей пробивное напряжения. Его суть состоит в том, что образующиеся в переходе в результате ударной ионизации пары носителей заряда разделяются полем перехода: электроны уходят на коллектор, увеличивая его ток, а дырки скапливаются в базе, увеличивая ее потенциал и снижая потенциальный барьер в эмиттерном переходе. В результате увеличивается инжекция электронов из эмиттера в базу и растет коллекторный ток. Соответственно уменьшается пробивное напряжение. Наиболее сильно накопление дырок в базе происходит при отсутствии базового тока ( iБ=0), что соответствует разомкнутой цепи базы ( RБ =  ). В этом режиме пробивное напряжение UКЭ0 проб оказывается в несколько раз ниже, чем в схеме ОБ, и определяется выражением:

 

UКЭ0 проб = UКБ0 проб (3.40)

 

где b= 2...6 - коэффициент, зависящий от материала, из которого изготовлен транзистор. В связи с сильным уменьшением пробивного напряжения запрещается эксплуатация транзистора с разомкнутой базовой цепью.

 

 

На рис 29 приведены выходные характеристики транзистора в режиме пробоя. Помимо рассмотренных выше пробивных напряжений UКБ0проб и UКЭ0проб на рисунке показано напряжение UКЭRпроб, соответствующее некоторому конкретному сопротивлению RБ, включенному в цепь базы и определяющему ее ток. Из рисунка видно, что UКЭ0 проб < UКЭR проб< UКБ0 проб. Для увеличения напряжения пробоя коллекторного перехода степень легирования коллектора стараются выбирать достаточно низкой. Так же, как и в полупроводниковом диоде, обратимый лавинный пробой (называемый иногда первичным пробоем) при отсутствии ограничения тока может перейти в тепловой пробой (вторичный пробой), характеризующийся уменьшением напряжения uКЭ (см. рис.29) и приводящий к выходу транзистора из строя. При этом в транзисторе опасность возникновения теплового пробоя оказывается значительно сильнее, чем в диоде. Это объясняется тем, что за счет инжекции электронов из эмиттера в базу через обратно- смещенный коллекторный переход при больших напряжениях протекает большой обратный ток и, соответственно, велика мощность, рассеиваемая в переходе. Тепловой пробой наступает в том случае, когда рассеиваемая на коллекторе мощность PК =uКЭ iК превышает максимально допустимую рассеиваемую мощность PК МАКС. Гипербола, соответствующая допустимой мощности, показана пунктиром на рис. 29. Кроме лавинного и теплового пробоя в транзисторах с очень узкой базой возникает специфический для транзисторной структуры вид пробоя, называемый эффектом смыкания. Он связан с эффектом Эрли и заключается в том, что при очень большом обратном напряжении коллекторный переход, расширяясь, заполняет всю базовую область и смыкается с эмиттерным переходом, что эквивалентно их короткому замыканию.

 


Заключение

 

Биполярный точечный транзистор был изобретен в 1947 году, в течение последующих лет он зарекомендовал себя как основной элемент для изготовления интегральных микросхем, использующих транзисторно-транзисторную, резисторно-транзисторную и диодно-транзисторную логику.

Без транзисторов не обходится не одно предприятие, которое выпускает электронику. На транзисторах основана вся современная электроника. Их широко применяют в теле, радио и компьютерных аппаратурах.

Транзисторы представляют собой полупроводниковые приборы с двумя p-n-переходами. В простейшем случае транзисторы состоят из кристалла германия и двух клемм (эмиттер и коллектор), касающихся поверхности кристалла на расстоянии 20-50 микронов друг от друга. Каждая клемма образует с кристаллом обычный выпрямительный контакт с проводимостью от клеммы к кристаллу. Если между эмиттером и базой подать прямое смещение, а между коллектором и базой - обратное, то оказывается, что величина тока коллектора находится в прямой зависимости от величины тока эмиттера.

Информация о работе Биполярные транзисторы