Автор работы: Пользователь скрыл имя, 11 Апреля 2011 в 02:44, курсовая работа
Нагревательные печи прокатного производства предназначены для нагрева слитков перед прокаткой на обжимных станах и заготовок (слябов и блюмов) – перед листовыми и сортовыми станами.
ВВЕДЕНИЕ
1. ВСТУПЛЕНИЕ
2. КОНСТРУКЦИЯ АГРЕГАТА И ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС
3. МЕТОДИЧЕСКАЯ ПЕЧЬ КАК ОБЪЕКТ АВТОМАТИЗАЦИИ
4. ОБЩИЕ ЗАДАЧИ АВТОМАТИЗАЦИИ
5. РАЗРАБОТКА И ОПИСАНИЕ СТРУКТУРНОЙ СХЕМЫ АВТОМАТИЗАЦИИ
6. РАЗРАБОТКА И ОПИСАНИЕ ФУНКЦИОНАЛЬНОЙ СХЕМЫ АВТОМАТИЗАЦИИ
7. РАЗРАБОТКА И ОПИСАНИЕ ПРИНЦИПИАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ КОНТУРА КОНТРОЛЯ И РЕГУЛИРОВАНИЯ
8. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ НАГРЕВА МЕТАЛЛА В МЕТОДИЧЕСКОЙ ПЕЧИ
9. ИНСТРУКЦИЯ ПО ПОЛЬЗОВАНИЮ ПРОГРАММОЙ
ВЫВОДЫ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
Задачей локальной системы является обеспечение заданной температуры рабочего пространства в зоне отопления путём соответствующего изменения ее тепловой нагрузки.
Изменение тепловой нагрузки зон, оборудованных инжекционными горелками, осуществляется путём изменения расхода топлива при воздействии на общую поворотную заслонку на зональном газопроводе. Соответствующее изменение расхода воздуха горения достигается автоматически изменением режима работы горелок.
Для
зон, оборудованных дутьевыми
Качество работы системы зависит от того, насколько правильно выбраны точка контроля, способ установки датчика, тип и настройка регулятора, а также регулирующий орган.
Тип регулятора и его настройки выбирают в соответствии с динамическими свойствами зоны, которую, с достаточной степенью точности, можно рассматривать как последовательное соединение звена чистого запаздывания и статического звена первого порядка.
Требуемый
температурный режим в
Первоначально в качестве такого параметра выбирали температуру в методической зоне печи или температуру отходящих газов, так как увеличение скорости продвижения металла приводит к снижению этих температур, а уменьшение к их росту. Однако от этого импульса пришлось отказаться, так как указанная зависимость имеет место только при постоянном температурном режиме в зонах отопления. Если же температуры в зонах изменяются, то эта зависимость становится неоднозначной и существенно различной при переходном и установившемся режимах.
Более
представительным импульсом является
температура поверхности
В этих системах сигнал выходного датчика потенциометра, работающего в комплекте с радиационным пирометром, преобразуется и поступает на вход регуляторов температуры сварочных, а иногда и томильной зон, изменяя задание на требуемую величину
Температура металла
Важнейшим параметром, характеризующим режим нагрева, является температура металла. Существенной является не только температура поверхности заготовки, но и её распределение по толщине. Однако непрерывный замер этого распределения для всех нагреваемых заготовок в процессе нормальной эксплуатации печи невозможен, поэтому в системах и алгоритмах управления, а также системах защиты используют в качестве измеряемого параметра только температуру поверхности. Температуру внутри заготовки определяют путём расчётов в использованием уравнений внутренней теплопередачи; и лишь периодически, для контрольных заготовок, измеряют с помощью специальных термопар.
Можно выделить ряд задач, при решении которых используют измеренную температуру металла. В зависимости от типа задачи в само понятие "температура металла" вкладывают различное содержание, соответственно формулируют требования к способу измерения температуры поверхности и формированию выходной контролируемой величины, а также требования к точности, количеству и месту установки датчиков.
Наиболее простой задачей является предотвращение оплавления заготовки. В этом случае под температурой металла понимают температуру поверхности заготовки вне зависимости от того, покрыта она окалиной или нет.
Более сложной задачей является измерение температуры металла в методической зоне с целью использования полученной информации для управления температурным режимом всей печи при изменениях её производительности.
В этом случае под температурой металла понимают температуру поверхности заготовки, измеренную в строго определённом месте печи, для которого выдерживается однозначная и линейная зависимость производительности печи от измеренной температуры.
Ещё более сложная задача возникает при переходе от систем регулирования температуры печного пространства к системе регулирования непосредственно температуры металла в процессе его нагрева. Такой переход целесообразен, так как связь между температурой металла и печного пространства не является однозначной, а непрерывно видоизменяется в зависимости от режима работы печи, сортамента и координаты нагреваемой заготовки, что приводит к значительному разбросу температур металла на выдаче из-за несвоевременного или неправильного изменения задания регуляторам температуры в зонах.
Однако при переходе к регулированию непосредственно температуры металла необходимо учитывать два основных фактора: 1) нагрев металла в методической печи является распределённым процессом, в результате чего все заготовки в зоне имеют различное распределение температур по сечению; коэффициент передачи по каналу расход топлива – температура поверхности заготовки изменяется по длине зоны, увеличиваясь в направлении движения факела; 2) зоны печи не приспособлены для независимого регулирования локальных температур.
Следовательно, для создания эффективной системы управления нагревом металла необходим распределённый контроль температуры, на основе которого может быть сформирована величина, характеризующая усреднённую по длине зоны температуру поверхности заготовок. Именно эта величина будет являться регулируемым параметром и её понимают под температурой металла при решении данной задачи.
Непрерывный распределённый контроль температуры металла в настоящее время практически неосуществим, поэтому предложено заменить его контролем в конечном числе точек, т.е. заменить пространственную реализацию температурного профиля поверхности металла по длине зоны ступенчатой кривой, которая в интервалах между точками контроля остаётся неизменной.
Следующая
задача, при решении которой
Следующая задача, при которой используется измеренная температура металла, - проверка точности моделей нагрева, их адаптация и определение достигнутых результатов управления.
В этом случае под температурой металла понимается температура поверхности заготовки, измеренная в любом заранее заданном и удобном для обслуживания месте. Число датчиков меньше или равно числу зон. Допустимая абсолютная погрешность измерения не более 10 К. Столь жёсткие требования к точности измерения связаны с тем, что сравниваются абсолютные значения рассчитанной и измеренной температур поверхности и по полученной разнице направленно корректируются коэффициенты в моделях нагрева или управления. Низкая точность измерения может привести либо к неустойчивости модели, либо к слишком большому времени их адаптации.
Из сказанного выше следует, что для решения любой из перечисленных задач необходимо обеспечить непрерывное измерение температуры поверхности заготовки. Точность измерения, количество точек контроля и их расположение по длине печи, способ обработки полученной информации и содержание понятия "температура металла" определяются типом решаемой задачи.
Непрерывное
определение распределения
Давление в рабочем пространстве печи
Давление в рабочем пространстве методических печей существенно влияет на их тепловую работу. Оно определяет при прочих равных условиях интенсивность нагрева металла, удельный расход топлива, величину угара и окалинообразования, удобство обслуживания и сохранность агрегата.
Излишне высокое давление ведёт к выбиванию из печи продуктов сгорания, что наряду с ростом тепловых потерь вызывает ускоренный износ внешних конструкций, затрудняет визуальный контроль и обслуживание, загрязняет атмосферу цеха.
Слишком низкое давление обусловливает подсос в печь через рабочие окна и различные неплотности в кладке холодного воздуха, что ведёт к ухудшению использования топлива, увеличению угара и окалинообразования и затрудняет управление процессом горения. Особенно опасен подсос воздуха через окно выдачи, вызывающий неравномерное охлаждение ближайшей заготовки и подстуживание подины. При длительной паузе в работе стана эта заготовка уже не может быть направлена в прокатку, а возвращается на склад.
Наиболее благоприятным в смысле обеспечения наилучшей тепловой работы печи и удобства её обслуживания является небольшое положительное давление во всём рабочем пространстве. Однако создать такой режим работы на современных методических печах практически невозможно. Главная причина – работа горелок, подающих топливо и воздух с большой кинетической энергией. По мере движения вдоль зоны скорость продуктов сгорания уменьшается, динамический напор переходит в статический, в результате чего давление непрерывно нарастает в направлении окна посада.
Возникающий при этом перепад по длине каждой зоны зависит не только от типа установленных в ней горелок, их положения и направления, но и от конфигурации самой зоны и количества топлива, подаваемого в неё.
Попытки
выровнять распределение
По высоте печи давление также различно из-за влияния геометрического напора столба продуктов сгорания. Под сводом оно выше, чем на уровне металла, в нижних зонах – минимально, это ведёт к перетокам, обусловливающим взаимовлияние зон и перегрев торцов заготовок.
Периодическое открытие заслонок окна выдачи вызывает дополнительные изменения давления, особенно сильно проявляющиеся в томильной зоне.
При таком многообразии возмущающих факторов и различии их проявлении в различных точках рабочего пространства на современных методических печах имеется лишь один канал управления давлением – изменением тяги. В зависимости от принятой схемы это изменение реализуют путём воздействия на положение поворотного клапана в дымовом борове, или на производительность дымососа, или на режим работы вытяжной трубы.
Однако в любом случае при изменении тяги изменяются только абсолютные значения давления, а не характер его распределения по длине и высоте печи. График распределения перемещается параллельно самому себе, не претерпевая сколь-нибудь существенной деформации.
В таких условиях давление в одной произвольно выбранной точке рабочего пространства может лишь приближённо характеризовать гидравлический режим печи и соответствующую ему тепловую работу. Исходя из этого, выбор импульсной точки в рабочем пространстве осуществляется в соответствии с главной для данной печи задачей – основным требованием к её гидравлическому режиму.