Автор работы: Пользователь скрыл имя, 11 Апреля 2011 в 02:44, курсовая работа
Нагревательные печи прокатного производства предназначены для нагрева слитков перед прокаткой на обжимных станах и заготовок (слябов и блюмов) – перед листовыми и сортовыми станами.
ВВЕДЕНИЕ
1. ВСТУПЛЕНИЕ
2. КОНСТРУКЦИЯ АГРЕГАТА И ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС
3. МЕТОДИЧЕСКАЯ ПЕЧЬ КАК ОБЪЕКТ АВТОМАТИЗАЦИИ
4. ОБЩИЕ ЗАДАЧИ АВТОМАТИЗАЦИИ
5. РАЗРАБОТКА И ОПИСАНИЕ СТРУКТУРНОЙ СХЕМЫ АВТОМАТИЗАЦИИ
6. РАЗРАБОТКА И ОПИСАНИЕ ФУНКЦИОНАЛЬНОЙ СХЕМЫ АВТОМАТИЗАЦИИ
7. РАЗРАБОТКА И ОПИСАНИЕ ПРИНЦИПИАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ КОНТУРА КОНТРОЛЯ И РЕГУЛИРОВАНИЯ
8. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ НАГРЕВА МЕТАЛЛА В МЕТОДИЧЕСКОЙ ПЕЧИ
9. ИНСТРУКЦИЯ ПО ПОЛЬЗОВАНИЮ ПРОГРАММОЙ
ВЫВОДЫ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
ВЫВОДЫ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
Приложение
А
Введение
Нагрев металла является важнейшей технологической операцией, в значительной мере определяющей экономические показатели производственного процесса в целом. Технология прокатки предъявляет жесткие требования к качеству нагрева. Распределение температур по сечению заготовки, обеспечивающее необходимую пластичность металла, должно быть достигнуто за определенное время без чрезмерного перегрева поверхности металла. Нагревательные устройства должны обеспечить кондиционный нагрев металла в условиях переменного ритма работы стана и при минимальном расходовании топлива. Качество нагрева определяется избранным графиком нагрева металла, т. е. скоростью и продолжительностью нагрева в каждой из зон печи. Каждому графику нагрева соответствуют конечная температура поверхности металла, неравномерность температур по сечению заготовки и величина угара металла. В современных методических печах кривая, характеризующая распределение температур по длине печи, круто поднимается на участке, соответствующем загрузочному концу печи, и становится пологой на участке, соответствующем высокотемпературной зоне ее.
Соблюдение такого графика обеспечивается высокой температурой отходящих газов. Применение его особенно целесообразно при нагреве толстых заготовок, так как теплопроводность металла уменьшается с повышением его температуры. С повышением температуры в сварочной зоне трехзонных печей необходимое время выдержки в томильной зоне часто удлиняется в большей степени, чем сокращается время нагрева в методической и сварочной зонах. Поэтому оптимальное значение температуры сварочной зоны, соответствующее нагреву металла до заданных кондиций, соответствует в первую очередь, заданной неравномерности температур по сечению заготовки.
В прокатных цехах заканчивается цикл металлургического производства. Процесс получения готового прокатного изделия обычно разбивается на несколько этапов: вначале слиток прокатывают на крупных обжимных и заготовительных станах до заготовки, которую затем для получения готового профиля передают на сортовые, листопрокатные или специальные (колесопрокатные, трубопрокатные и др.) станы.
Качество
продукции и производительность
прокатных станов во многом определяются
работой нагревательных печей, причем
в большинстве случаев ошибки,
возникающие при нагреве
Нагревательные печи прокатного производства предназначены для нагрева слитков перед прокаткой на обжимных станах и заготовок (слябов и блюмов) – перед листовыми и сортовыми станами.
Являясь начальным звеном технологической линии прокатного производства, нагревательные печи в своей работе тесно связаны с ритмом работы прокатного оборудования, и наряду с этим сохраняют особенности, присущие всем теплотехническим агрегатам. Основное время печи работают в переходных режимах, вызванных изменением сортамента, марки нагреваемых заготовок и темпа их выдачи. В прокатном производстве для нагрева металла перед прокаткой используются в основном три вида нагревательных печей: нагревательные колодцы, методические и секционные.
Современные
нагревательные печи представляют собой
высокомеханизированные агрегаты, удовлетворяющие
технологическим и
Требования к работе нагревательных печей включают в себя:
Интегральным
экономическим показателем
В
настоящее время
На передний план выдвигается требование эффективного использования топлива и других ресурсов, т.е. проблема энерго- и ресурсосбережения. В связи с этим меняется актуальность научных проблем. Например, утратила своё значение задача интенсификации теплообмена в печах, как средство повышения скорости нагрева, а, значит, и производительности нагревательных печей. Скоростной нагрев и высокая производительность сегодня не являются самоцелью, поскольку промышленной практике нужны не рекорды, а экономическая целесообразность.
Из анализа теплового баланса печи, записанного в форме, предложенной И.Д.Семикиным, следует вывод о том, что возможны три направления энергосбережения:
Рассмотрим конкретные способы реализации каждого из трёх направлений энергосбережения в современных печах металлургии и машиностроения.
1 способ. Уменьшение Дi достигается на практике путем повышения начальной температуры металла при посаде его в печь. Так называемый "горячий посад" возможен при сохранении в металле теплоты, полученной им в предыдущем переделе, в том числе теплоты кристаллизации слитков. Применяемая на комбинате "Запорожсталь" технология посада в нагревательные колодцы слитков с незатвердевшей сердцевиной обеспечивает, по свидетельству комбината, сокращение удельного расхода топлива на 40%, с 51,7 до 30,7 кг условного топлива на тонну слитков. Подобные результаты получены на комбинате "Криворожсталь". Согласно расчетам, в момент посада слитков в колодцы примерно 30% их объема занимает жидкая сердцевина.
Необходимо как можно меньше охлаждать заготовки, полученные на МНЛЗ, перед посадом в нагревательные печи для последующей прокатки. Примером осуществления такой энергосберегающей технологии являются литейно-прокатные модули.
В ряде случаев удаётся вообще исключить промежуточный нагрев металла между двумя последовательными прокатными станами, т.е. довести тепловой дефицит до нуля благодаря уменьшению потерь теплоты раскатами при транспортировке от одного стана к другому. На комбинатах "Запорожсталь" и им. Ильича внедрена технология "транзитной" прокатки слябов на непрерывных листовых станах, при которой 95% слябов прокатываются без промежуточного нагрева в методических печах. В данном случае удельный расход условного топлива в методических печах сокращен с 85 до 15 кг/т.
Уменьшить Дi можно также путем снижения температуры нагрева металла в печи. Однако надо учитывать, что это повлечет за собой не только уменьшение расхода топлива, угара и обезуглероживания металла, но и увеличит расход электроэнергии на прокатку и, вероятно, сократит срок службы прокатных валков. Таким образом, выбор температуры нагрева заготовок представляет собой задачу оптимизации по минимуму всех затрат на процессы нагрева и прокатки.
2 способ. Потери теплоты из рабочего пространства имеют место в любых печах, но они особенно существенны в нагревательных и термических печах циклического действия, когда в цикл термообработки входит охлаждение печи до низкой температуры или когда такое охлаждение обусловлено длительными промежутками между циклами нагрева садки. Футеровка таких печей, выполненная из шамотного кирпича, поглощает примерно в 3 раза больше теплоты, чем садка металла. Уменьшение количества теплоты на разогрев футеровки достигается путем замены шамотных огнеупоров муллитокремнеземистыми волокнистыми плитами, производство которых налажено на Украине и в России.
В проходных печах с шагающими балками благодаря применению волокнистых материалов для тепловой изоляции стен и водоохлаждаемых балок в сочетании с бетонной оболочкой потери теплоты из рабочего пространства сокращают до 3-5% от тепловой мощности печи.
3 способ. Для повышения КИТ применяют следующие мероприятия:
Однако
наиболее эффективным средством
повышения КИТ и экономии топлива
является утилизация теплоты уходящих
из печи газов, в частности, путем
нагрева воздуха и
В рекуператорах доля теплоты, передаваемой воздуху по отношению к теплоте уходящих дымовых газов, составляет 30-40%. Остальная часть теплоты выносится в атмосферу.
На печах большой мощности устанавливают энергетические котлы-утилизаторы. Однако присущая нагревательным печам работа с переменной производительностью создает ненормальные условия для эксплуатации дорогостоящих котлов-утилизаторов.
Причины низкой эффективности существующих рекуператоров таковы:
Перспективным направлением развития конструкций нагревательных печей в XXI веке является применение для утилизации теплоты печных газов малогабаритных, в частности, шариковых регенераторов. Регенеративные печи нового типа получают распространение в мире по мере накопления опыта их эксплуатации. Насадка малогабаритных регенераторов, применяемых в промышленных нагревательных печах, состоит из корундовых окатышей диаметром 20-25 мм, содержащих 98% Al2O3. Поверхность нагрева 1 м3 такой насадки в 10-15 раз больше, чем кирпичной насадки типа Сименс. Поэтому шариковый регенератор имеет небольшие габариты и может устанавливаться в стенах печи или в так называемой регенеративной горелке. Чтобы возвратить в печь с нагретым воздухом и, при необходимости, с газом как можно больше теплоты, уносимой дымом, насадка регенератора не должна прогреться по всей высоте, поэтому через 1-3 минуты делают перекидку клапанов – дымовоздушных и газовых, при этом температура дыма на выходе из регенератора не превышает 150-200°С.
Шариковые регенераторы возвращают в печь 85-90% теплоты уходящих из печи газов. Температура подогрева воздуха примерно на 100°С ниже температуры дыма на выходе из печи. Расход топлива на печь сокращается в 1,5-2,0 раза. Наибольший эффект относится к печам, не имевшим рекуператоров. Перевод действующих печей на регенеративное отопление требует установки дымососа для преодоления аэродинамического сопротивления шариковой насадки.