Автор работы: Пользователь скрыл имя, 04 Мая 2010 в 19:17, реферат
Факторным называется такой план, согласно которому одновременно изучается влияние на зависимую переменную двух или более факторов. Т. к. несколько факторов рассматриваются в рамках одного плана, то в добавление к возможности оценить их воздействие на зависимую переменную по отдельности (главные эффекты) появляется возможность измерить эффекты их совместного влияния на эту переменную (взаимодействия).
Дробные 2**(k-p) факторные планы, вероятно, наиболее часто используемые планы в промышленных экспериментах. Предмет рассмотрения любого 2**(k-p) дробного факторного эксперимента включает число исследуемых факторов, число опытов в эксперименте и наличие блоков опытов эксперимента. После этих основных вопросов следует также определить, позволяет ли число опытов найти план требуемого разрешения и степень смешивания для критического порядка взаимодействий, для данного разрешения.
Введение
1 Простые факторные планы
2 Простые сравнивающие эксперименты
Вывод
Список использованных источников
Критерий минимальной аберрации плана. Критерий минимальной аберрации плана является другим необязательным критерием, используемым при поиске 2**(k-p) плана. В некоторых отношениях этот критерий похож на критерий максимальной несмешанности. Формально план с минимальной аберрацией определяется как план с максимальным разрешением "с минимальным числом слов в определяющем взаимоотношении, которое имеет минимальную длину" (Fries & Hunter, 1984). Менее формально, действие критерия основано на выборе генераторов, которые дают наименьшее число пар смешанных взаимодействий критического порядка. Например, план разрешения IV с минимальной аберрацией имел бы минимальное число пар смешанных 2-факторных взаимодействий.
Для пояснения различия между критериями максимальной несмешанности и минимальной аберрации рассмотрим максимально несмешанный план 2**(9-4) и план 2**(9-4) с минимальной аберрацией, как в примере, данном Box, Hunter, и Hunter (1978). Если вы сравните эти два плана, вы увидите, что в максимально несмешанном плане 15 из 36 2-факторных взаимодействий не смешаны с любыми другими 2-факторными взаимодействиями, в то время как в плане с минимальной аберрацией только 8 из 36 2-факторных взаимодействий не смешаны с любыми другими 2-факторными взаимодействиями. План с минимальной аберрацией, однако, дает 18 пар смешанных взаимодействий, в то время как максимально несмешанный план дает 21 пару смешанных взаимодействий. Таким образом, эти критерии приводят к выделению генераторов, дающих различные "лучшие" планы.
К счастью, выбор между критерием максимальной несмешанности и критерием минимальной аберрации не вносит различия в выбранном плане (за исключением, возможно, переобозначения факторов), когда имеется 11 или меньше факторов, - единственное исключение составляет план 2**(9-4), описанный выше (смотрите Chen, Sun, & Wu, 1993). Для планов с более чем 11 факторами оба критерия приводят к весьма различным планам, и нет лучшего совета, как использовать оба критерия, а затем сравнить полученные планы и выбрать план, наиболее отвечающий вашим потребностям. Добавим, что максимизация числа полностью несмешанных эффектов часто имеет больший смысл, чем минимизация числа пар смешанных эффектов.
Эксперименты
представляют собой запланированное
введение фактора в ситуацию с целью установить
его связь с изменением в данной
ситуации. Вводимый фактор обычно называют
вмешательством, воздействием и
Вывод
Экспериментальные методы широко используются как в науке, так и в промышленности, однако нередко с весьма различными целями. Обычно основная цель научного исследования состоит в том, чтобы показать статистическую значимость эффекта воздействия определенного фактора на изучаемую зависимую переменную.
В условиях промышленного эксперимента основная цель обычно заключается в извлечении максимального количества объективной информации о влиянии изучаемых факторов на производственный процесс с помощью наименьшего числа дорогостоящих наблюдений. Если в научных приложениях методы дисперсионного анализа используются для выяснения реальной природы взаимодействий, проявляющейся во взаимодействии факторов высших порядков, то в промышленности учет эффектов взаимодействия факторов часто считается излишним в ходе выявления существенно влияющих факторов.
Основные принципы
планирования эксперимента, обеспечивающие
получение максимума информации
при минимуме опытов. Отказ от полного
перебора возможных входных состояний.
Выбор числа уровней варьирования по каждому
фактору на основании вида аппроксимации
функции отклика. Принцип последовательного
планирования, предусматривающий получение
простейшей математической модели на
основании небольшого числа опытов и,
если полученная модель не удовлетворяет
исследователя, постепенное усложнение
математической модели на основе проведения
новых (дополнительных) опытов до тех пор,
пока не будет получена модель, которую
исследователь признает достаточно хорошей.
Список
использованных источников