Контрольная работа по «Основы технологии переработки природного топлива»

Автор работы: Пользователь скрыл имя, 11 Марта 2012 в 14:54, контрольная работа

Краткое описание

1.Перечислите методы выделения и очистки аренов, получаемых при коксовании каменного угля. Дайте их сравнительную характеристику.
2. Назовите продукты первичной перегонки нефти, чем определяется выбор технологической схемы и режима проведения процесса. Приведите принципиальную технологическую схему.

Содержимое работы - 1 файл

контрольная про арены.docx

— 85.97 Кб (Скачать файл)

Министерство образования  и науки

ФГБОУ ВПО Уральский Государственный  Экономический университет

 

 

 

 

 

 

Контрольная работа

по дисциплине : «Основы технологии переработки природного топлива»

вариант № 5.

 

 

 

                                                                                специальность «УК-10п»

                                                             выполнила:

                                                                      Третьякова С.В.

                                                          Проверила:

 

 

2012г

1.Перечислите методы выделения  и очистки аренов, получаемых при коксовании каменного угля. Дайте их сравнительную характеристику.

2. Назовите продукты первичной  перегонки нефти, чем определяется  выбор технологической схемы  и режима проведения процесса. Приведите принципиальную технологическую  схему.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Методы  выделения и очистки аренов, получаемых при коксовании каменного угля. Дайте их сравнительную характеристику.

 

 Арены (бензоидные углеводороды, углеводороды бензольного ряда) – углеводороды гомологического ряда бензола, характеризующиеся наличием бензольного кольца (ядра), в котором атомы углерода находятся в состоянии sp2-гибридизации. Общая формула бензола и его гомологов СnН2n-6 (n≥6). Названия аренов оканчиваются словом –бензол, перед которым записывают названия радикалов-заместителей.

Простейшие  представители аренов – бензол, метилбензол (толуол), диметилбензол (ксилол) и др. Получают арены в основном при коксовании каменного угля и ароматизацией.

Арены находят применение в производстве красителей, лекарств, моющих средств, полимеров, взрывчатых веществ и др.                                                             

Выделение аренов (ароматических углеводородов) из смесей с насыщенными углеводородами проводят в основном с помощью селективных растворителей методами экстракции и экстрактивной ректификации, а при исследованиях состава нефтяных фракций — методом адсорбционной жидкостной хроматографии. 
В 50—60-х годах основным экстрагентом аренов служил диэтиленгликоль — растворитель, достаточно селективный, термически и гидролитически стабильный, сравнительно дешевый и малотоксичный. Основной недостаток диэтиленгликоля — низкая растворяющая способность по отношению к аренам и, как следствие, необходимость проведения экстракции при высоком соотношении экстр агент: сырье и высокой температуре, что приводит к высоким энергетическим затратам. 
 
На ряде установок диэтиленгликоль заменен на экстрагент с более высокой растворяющей способностью — триэтиленгликоль, а за рубежом используется и тетраэтиленгликоль, что. позволяет существенно снизить массовое отношение экстрагента к сырью. 
В конце 50-х годов был разработан более эффективный процесс экстракции аренов сульфоланом — растворителем с более высокой как селективностью, так и растворяющей способностью. Степень извлечения аренов из фракции 62—140°С сульфоланом составляет для бензола — 99,9; толуола — 99,5 и ксилолов — 98%. В настоящее время сульфолан является наиболее широко применяемым за рубежом экстрагентом, используется он и на комплексах по производству аренов, в России. 
На ряде зарубежных установок применяется смесь N-метилпирролидона с этиленгликолем, а в Германии — смесь N-метилекапролактама с этиленгликолем. Лактамы проявляют очень высокую растворяющую способность по отношению к аренам, а добавление этиленгликоля приводит к повышению селективности и критической температуры растворения сырья. 
Высокоселективный растворитель для выделения аренов в основном методом экстрактивной ректификации — N-формилморфолин. 
Французский институт нефти в 60-е годы разработал процесс экстракции ареиов диметилсульфоксидом. Недостаток этого экстрагента — невысокая термическая и гидролитическая стабильность. Поэтому его регенерацию производят не обычным способом ректификации с водяным паром, а реэкстракцией аренов из экстрактной фазы низкокипящими алканами (бутаном, пентаном). Подобную реэкстракционную схему можно использовать в процессах экстракции аренов экстрагентами с очень высокой температурой кипения, например тетраэтиленгликолем, в качестве реэкстрагента применяют высококипящий алкан (додекан). 
Полициклические арены, содержащиеся в масляных фракциях, удаляют экстракцией фенолом, фурфуролом, N-метилпирролидоном, нитробензолом, смесями фенола с крезолами. Наиболее широко используемые для этой цели растворители — фенол и фурфурол — имеют существенные недостатки. Фенол малоселективен, что приводит к невысокому качеству и выходу рафинатов, кроме того, он вызывает ожоги при попадании на кожу, имеет сравнительно высокую температуру кристаллизации. Основной недостаток фурфурола — низкая термоокислительная стабильность, что приводит к большим потерям экстрагента и забивке экстракционного оборудования образующимися полимерами. Нитробензол находит ограниченное применение из-за высокой токсичности и сравнительно высокой температуры кипения, что осложняет регенерацию экстрагента. Наиболее эффективным экстрагентом для селективной очистки масел является N-метилпирролидон. 
Для разделения аренов, в частности изомеров ксилола и этилбензола, кроме ректификации (для выделения о-ксилола и на некоторых установках этилбензола) в промышленности применяют адсорбцию на цеолитах, кристаллизацию п-ксилола, экстракцию м-ксилола борофтороводородной кислотой. 
При исследованиях состава нефтяных фракций арены нафталинового ряда можно выделять комплексообразованием с пикриновой кислотой или другими сильными электроноакцепторными соединениями. 
 
Углеводороды фенантренового ряда выделяют из нефтяных фракций, используя реакцию фотоконденсации с малеиновым ангидридом. Антрацен и его гомологи взаимодействуют с малеиновым   ангидридом даже в темноте. 
Производные бензола и нафталина не реагируют с малеиновым ангидридом. Поэтому сначала проводят обработку фракции малеиновым ангидридом в темноте и выделяют углеводороды антраценового ряда, а затем на свету, и выделяют фенантрен и некоторые его гомологи. Однако выход аддуктов производных фенантрена с малеиновым ангидридом составляет всего около 40 %.

2.Назовите продукты первичной  перегонки нефти, чем определяется  выбор технологической схемы  и режима проведения процесса. Приведите принципиальную технологическую  схему.

Сырьё процесса - нефть, содержащая соли (до 900 мг/л) и воду (до 1,0%). 
 
Продукция:  
 
углеводородный газ - выводится в виде газа и головки стабилизации, используется как бытовое топливо и сырьё для газофракционирования; 
 
бензиновая фракция - выкипает в пределах 30-180°С, используется как компонент товарного автобензина, как сырьё установок каталитического риформинга, вторичной перегонки, пиролизных установок; 
 
керосиновая фракция - выкипает в пределах 120-315°С, используется как топливо для реактивных и тракторных двигателей, для освещения, как сырьё установок гидроочистки; 
 
дизельная фракция (атмосферный газойль) - выкипает в пределах 180 -350 С, используется как топливо для дизельных двигателей и сырьё установок гидроочистки; 
 
мазут (остаток атмосферной перегонки) выкипает выше 350°С, используется как котельное топливо или сырьё термического крекинга; 
 
вакуумный дистиллят (вакуумный газойль) - выкипает в пределах выше 350-500 С, используется как сырьё каталитического крекинга и гидрокрекинга; на НПЗ с масляной схемой переработки получают несколько (2-3) вакуумных дистиллятов; 
 
гудрон (остаток атмосферно- вакуумной перегонки) - выкипает при температуре выше 500°С, используется как сырье установок термического крекинга, коксования, производства битума и масел. 
 
При выборе ассортимента вырабатываемой продукции необходимо учитывать качество нефти и требования, предъявляемые к качеству нефтепродуктов, например, выработку узких бензиновых фракций головной (н.к.-62 °С), бензольной (62-85 °С), толуольной (85-120 °С) и ксилольной (120-140 °С) можно принимать только при высоком содержании в них нафтеновых углеводородов. При низком и среднем содержании нафтеновых углеводородов предпочтительнее принимать схему выработки головной (н.к.-85 °С) и широкой (85-180 °С) бензиновых фракций с дальнейшим направлением последней на установки каталитического риформинга для получения высокооктановых компонентов бензинов. 
 
Поскольку к нефтяным фракциям, полученным на установках первичной переработки нефти, нельзя предъявлять требования ГОСТ на товарные продукты, то выбранные фракции керосина и дизельного топлива после процесса гидроочистки должны соответствовать стандарту, а выход их при этом должен быть по возможности максимальным. Так, при гидроочистке дизельной фракции температуры выкипания 50 и 90 % снижаются на 5-15 градусов. Это необходимо учитывать при определении пределов выкипания указанных фракций. Если это условие не может быть соблюдено, то полученные фракции после вторичных процессов будут компонентами товарных топлив. 
 
При определении качества керосина и дизельной фракции нужно иметь в виду также их температуру застывания и вспышки, плотность, вязкость. 
 
При получении масляных фракций в вакуумной части установки основными показателями, определяющими отбор их по кривой ИТК, являются высокое потенциальное их содержание, большой индекс вязкости, вязкость, температура застывания, содержание нафтеновых углеводородов, серы. 
 
Основные физико-химические и эксплуатационные свойства выбранных фракций сравниваются с показателями качества по ГОСТ на товарный вид продукции.

Принципиальная технологическая  схема.

Описание работы ЭЛОУ (рисунок 1)  
 
Сырая нефть, смешиваясь с деэмульгатором и раствором щелочи, поступает в теплообменный блок, где нагревается до оптимальной температуры. Затем нагретая нефть смешивается в эжекционных смесителях с промывной водой, поступающей из электродегидраторов второй ступени (Э-1/2 и Э-2/2), и подается в параллельно работающие электродегадраторы первой ступени (Э-1/1 и Э-2/1), сверху которых выводится частично обессоленная нефть, а снизу соленая вода на очистные сооружения. Частично обессоленная' нефть из Э-1/1 и Э-2/1 поступает в.эжекционные смесители, где смешивается со свежей промывной водой, поступающей из емкости (Е), затем в электродегадраторы второй ступени, сверху которых выводится обессоленная и обезвоженная нефть на установку АВТ. 
 
Напряжение между электродами поддерживается 32-33 кВ. Ввод сырья в электродегидратор и вывод из него осуществляется через расположенные в нижней и верхней части аппарата трубчатые перфорированные распределители (маточники). Маточники обеспечивают равномерное распределение восходящего потока нефти. В нижней части электродегидратора между маточником и электродами поддерживается определенный уровень воды, содержащий деэмульгатор, где происходит термохимическая обработка эмульсии и отделение- наиболее, крупных капель воды. В зоне между зеркалом воды и плоскостью нижнего электрода нефтяная эмульсия подвергается воздействию слабого электрического поля, а в зоне между электродами - воздействию электрического поля высокого напряжения. 
 
 
 
С - смеситель; ТОБ - теплообменный блок; Е - емкость; Н-1, Н-2 - насосы; Э - электродегидраторы 
 
Рисунок 1 - Принципиальная схема ЭЛОУ 
 
 
Технологическая схема установки АВТ – рисунок 2  (атмосферно-вакуумная установка) должна обеспечивать получение выбранного ассортимента продуктов из заданного сырья наиболее экономичным способом. Выбранная схема должна обеспечивать большую глубину отбора, четкость фракционирования, гибкость процесса, большой межремонтный пробег и высокие технологические показатели. 
 
В зависимости от мощности установки по сырью и свойств перерабатываемой нефти выбирают один из вариантов схем перегонки: однократного испарения с ректификацией в одной колонне (вариант 1), двукратного испарения в двух колоннах (вариант 2). Вариант 1 применяют для стабилизированных нефтей, в которых содержание бензиновых фракций не превышает 2-10 % мае. Схема по варианту 2 самая распространенная в отечественной практике, она наиболее гибка и работоспособна при значительном изменении содержания бензиновых фракций и растворенных газов, а также для сернистых и высокосернистых нефтей. 
 
К атмосферному блоку перегонки нефти добавляется блок вакуумной перегонки мазута также по различным схемам: однократного испарения в одной ректификационной колонне, двукратного испарения с ректификацией в двух колоннах. Вакуумный газойль или масляные дистилляты можно выводить в виде паров, жидких дистиллятов через отпарные колонны, промежуточные емкости и т.п. 
 
В случае выработки на установке узких бензиновых фракций делается выбор схемы блока вторичной разгонки бензиновой фракции. 
 
Независимо от выбора блока вторичной разгонки в схеме установки должен быть предусмотрен блок стабилизации бензиновой фракции. При выборе схемы-установки следует ознакомиться с типовыми схемами установок первичной перегонки нефти и мазута.  
 
 
Рисунок 2 - Схема установки первичной переработки нефти (ЭЛОУ-АВТ). 
 
К-1 - отбензинивающая колонна; К-2 - атмосферная колонна; К-3 -отпарная колонна; К-4 - стабилизатор; К-5 - вакуумная колонна; Э-1 - Э-4 - электродегидраторы; П-1, П-2 - печи; КХ-1 - КХ-4 - конденсаторы-холодильники; Е-1, Е-2 - рефлюксные емкости; А-1 - пароэжекторный вакуум-насос; 
 
I - нефти; II - головка стабилизации; III - стабильный бензин; IV -керосин; V - дизельная фракция; VI - вакуумный дистиллят; VII - гудрон; VIII - выхлопные газы эжектора; IX - деэмульгатор; X - вода в канализацию; XI - водяной пар. 
Установка состоит из 2-3 блоков: 1) обессоливания; 2) атмосферной перегонки; 3) вакуумной перегонки мазута. Установка, состоящая только из первых двух блоков носит название атмосферной трубчатки (AT), из всех трёх блоков - атмосферно-вакуумной трубчатки. Иногда первый и третий выделяются в самостоятельные установки. Нефть насосом забирается из сырьевого резервуара и проходит теплообменники, где подогревается за счет теплоты отходящих продуктов, после чего поступает в электродегидраторы. В электродегидраторах под действием электрического поля, повышенной температуры, деэмульгаторов происходит разрушение водонефтяной эмульсии и отделение воды от нефти. 
 
Вода сбрасывается в канализацию (или подаётся на упарку с выделением солей), а нефть проходит вторую группу теплообменников и поступает в отбензинивающую колонну К-1. 
 
В колонне К-1 из нефти выделяется легкая бензиновая фракция, которая конденсируется в холодильнике-конденсаторе ХК-1 и поступает в рефлюксную ёмкость Е-1. Полуотбензиненная нефть с низа колонны К-1 подаётся через трубчатую печь П-1 в атмосферную колонну К-2. Часть потока полуотбензиненной нефти возвращается в К-1, сообщая дополнительное количество теплоты, необходимое для ректификации. 
 
В колонне К-2 нефть разделяется на несколько фракций. Верхний продукт колонны К-2 -тяжелый бензин - конденсируется в холодильнике-конденсаторе ХК-2 и поступает в рефлюксную ёмкость Е-2. Керосиновая и дизельные фракции выводятся из колонны К-2 боковыми погонами и поступают в отпарные колонны К-3. 
 
В К-3 из боковых погонов удаляются (отпариваются) легкие фракции. Затем керосиновая и дизельные фракции через теплообменники подогрева нефти и концевые холодильники выводятся с установки. С низа К-2 выходит мазут, который через печь П-2 подаётся в колонну вакуумной перегонки К-5. 
 
В вакуумной колонне К-5 мазут разделяется на вакуумный дистиллят, который отбирается в виде бокового погона, и на гудрон. С верха К-5 с помощью пароэжекторного насоса А-1 отсасываются водяные пары, газы разложения, воздух и некоторое количество легких нефтепродуктов (дизельная фракция). Вакуумный дистиллят и гудрон через теплообменники подогрева нефти и концевые холодильники уходят с установки. 
 
Для снижения температуры низа колонн К-2 и К-5 и более полного извлечения дистиллятных фракций в них полется водяной пар. Избыточная теплота в К-2 и К-5 снимается с помощью циркулирующих орошений. 
 
Бензин из рефлюксных емкостей Е-1 и Е-2 после подогрева подается в стабилизационную колонну К-4. С верха К-4 уходит головка стабилизации -сжиженный газ, а с низа - стабильный бензин.Необходимая для ректификации теплота подводится в К-4 циркуляцией части стабильного бензина через печь.


Информация о работе Контрольная работа по «Основы технологии переработки природного топлива»