Автор работы: Пользователь скрыл имя, 22 Января 2012 в 14:39, курсовая работа
Почти ¾ поверхности нашей планеты занято океанами и морями. Твёрдой водой – снегом и льдом – покрыто 20% суши. Из общего количества воды на Земле, равного 1 млрд. 386 млн. кубических километров, 1 млрд. 338 млн. кубических километров приходится на долю солёных вод Мирового океана, и только 35 млн. кубических километров приходится на долю пресных вод. Всего количества океанической воды хватило бы на то, чтобы покрыть ею земной шар слоем более 2,5 километров.
Введение 3
Глава I 6
1. Строение молекулы воды 6
2. Физические свойства воды 8
2.1. Аномалия плотности 9
2.2. Переохлажденная вода 10
3. Структура и формы льда 11
4. Образование и месторождения льда 14
5. Плавление. Удельная теплота плавления 15
Глава II 20
1. Постановка задачи для описания процессов тепломассопереноса 20
2. Основные уравнения для ближней и промежуточной областей 21
3. Условия на фронтальных границах 24
4. Переход к автомодельным переменным 26
5. Результаты расчетов 28
Заключение 29
Список использованной литературы 30
2.2. Переохлажденная вода
Если очень чистую воду охлаждать, предохраняя от сотрясений, то её можно переохладить, т. е. достигнуть температур ниже нуля без образования льда. Однако такая переохлаждённая вода малоустойчива — при внесении в неё кристаллика льда она затвердевает. Переохладить воду можно либо в тонких капиллярах, либо - еще лучше - в виде эмульсии: маленьких капелек в неполярной среде - "масле".
Особенно легко
Некоторые растворённые в воде
примеси существенно влияют на
её способность к
При обычных условиях
Малая плотность льда связана
с наличием значительных
Вода при охлаждении в
В твердой воде (лед) атом кислорода
каждой молекулы участвует в образовании
двух водородных связей с соседними молекулами
воды согласно схеме, в которой водородные
связи показаны пунктиром
Рис 2. Водородные связи между молекулами воды
Образование водородных связей приводит к такому расположению молекул воды, при котором они соприкасаются друг с другом своими разноименными полюсами. Молекулы образуют слои, причем каждая из них связана с тремя молекулами, принадлежащими к тому же слою, и с одной — из соседнего слоя. Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, размеры которых несколько превышают размеры молекулы .
Характерной особенностью
Сейчас известно десять форм
льда, устойчивых при высоких
давлениях. И у всех
I – обычный лед, существующий при давлении до 2200 атм., при дальнейшем увеличении давления переходит в II;
II – лед с уменьшением объема на 18%, тонет в воде, очень неустойчив и легко переходит в III;
III – также тяжелее воды и может непосредственно быть получен из льда I;
IV
– легче воды, существует при
небольших давлениях и
V – может существовать при давлениях от 3600 до 6300 атм., он плотнее льда III, при повышении давления с треском мгновенно превращается в лед VI;
VI – плотнее льда V, при давлении около 21 000 атм. имеет температуру +76 °С; может быть получен непосредственно воды при температуре +60° С и давлении 16 500 атм.
Структура льда , у которой все углы между соседними водородными связями равны тетраэдрическому углу, обладает минимальной плотностью (наибольшей рыхлостью), возможной для четырежды координированных сеток. При деформации такой сетки плотность неизбежно увеличивается, так что, например, для льда III она составляет 1,15 г/см3, то есть на 25% больше, чем во льду.
Итак, при внешних воздействиях (повышении
давления) сетка водородных связей
во льду не разрушается, а
перестраивается, сохраняя
4. Образование и месторождения льда
Лёд образуется в основном
в водных бассейнах при
В результате замерзания морской воды образуется морской лёд. Характерными свойствами морского льда являются солёность и пористость, которые определяют диапазон его плотности от 0,85 до 0,94 г/см3 . Из-за такой малой плотности льдины возвышаются над поверхностью воды на 1/7-1/10 своей толщины. Морской лёд начинает таять при температуре выше -2,3°С. Он более эластичен и труднее поддается раздроблению на части, чем лёд пресноводный.
5. Плавление. Удельная теплота плавления
Процесс
плавления играет важную роль в природе
(плавление снега и льда на поверхности
Земли, плавление минералов в её недрах
и т.д.) и в технике (производство металлов
и сплавов, литьё в формы и др.).
Рис 3. Состояние чистого вещества (диаграмма)
Рис 4. Температура плавления кристаллического тела
Плавление - переход вещества из кристаллического (твёрдого) состояния в жидкое. Оно происходит с поглощением теплоты (фазовый переход I рода). Главными характеристиками плавления чистых веществ являются температура плавления (Тпл) и теплота, которая необходима для осуществления процесса плавления (Qпл).
Температура плавления зависит от внешнего давления р; на диаграмме состояния чистого вещества эта зависимость изображается кривой плавления (кривой сосуществования твёрдой и жидкой фаз, AD или AD' на рис. 3). Плавление сплавов и твёрдых растворов происходит, как правило, в интервале температур (исключение составляют эвтектики с постоянной Тпл). Зависимость температуры начала и окончания плавления сплава от его состава при данном давлении изображается на диаграммах состояния специальными линиями (кривые ликвидуса и солидуса). У ряда высокомолекулярных соединений (например, у веществ, способных образовывать жидкие кристаллы) переход из твёрдого кристаллического состояния в изотропное, жидкое происходит постадийно (в некотором температурном интервале), каждая стадия характеризует определённый этап разрушения кристаллической структуры.
Наличие определённой температуры плавления— важный признак правильного кристаллического строения твёрдых тел. По этому признаку их легко отличить от аморфных твёрдых тел, которые не имеют фиксированной Тпл. Аморфные твёрдые тела переходят в жидкое состояние постепенно, размягчаясь при повышении температуры. Самую высокую температуру плавления среди чистых металлов имеет вольфрам (3410 °С), самую низкую — ртуть (—38,9 °С). К особо тугоплавким соединениям относятся: TiN (3200 °С), HfN (3580 °С), ZrC (3805 °С), TaC (4070 °С), HfC (4160 °С) и др. Как правило, для веществ с высокой Тпл характерны более высокие значения Qпл. Примеси, присутствующие в кристаллических веществах, снижают их Тпл. Этим пользуются на практике для получения сплавов с низкой Тпл (Вуда сплав с Тпл = 68 °С) и охлаждающих смесей.
Плавление начинается при достижении кристаллическим веществом Тпл. С начала плавления до его завершения температура вещества остаётся постоянной и равной Тпл, несмотря на сообщение веществу теплоты (рис. 4). Нагреть кристалл до Т> Тпл в обычных условиях не удаётся, тогда как при кристаллизации сравнительно легко достигается значительное переохлаждение расплава.