Автор работы: Пользователь скрыл имя, 10 Февраля 2012 в 10:52, реферат
Уже прошло более ста лет, но дебаты по теории относительности не прекратились по сегодняшний день. Причина в логической противоречивости следствий («парадоксов»), вытекающих из СТО. К сожалению, критика касается только следствий, вытекающих из СТО, а не исходных посылок этой теории. В предыдущей статье «Проверим «Gedanken Experiments» Альберта Эйнштейна» [1] нам удалось обнаружить ошибки в «мысленных экспериментах» Эйнштейна. Это важно, поскольку они и их следствия определили неудачи теории относительности (логические противоречия, парадоксы и т.д.).
Реферат на тему:
Преобразование Лоренца без Эйнштейна
Уже прошло более ста лет, но дебаты по теории относительности не прекратились по сегодняшний день. Причина в логической противоречивости следствий («парадоксов»), вытекающих из СТО. К сожалению, критика касается только следствий, вытекающих из СТО, а не исходных посылок этой теории. В предыдущей статье «Проверим «Gedanken Experiments» Альберта Эйнштейна» [1] нам удалось обнаружить ошибки в «мысленных экспериментах» Эйнштейна. Это важно, поскольку они и их следствия определили неудачи теории относительности (логические противоречия, парадоксы и т.д.).
Теория относительности опирается на два постулата [2]:
Авторы различных учебников приводят различные варианты формулировок этих постулатов, сохраняя их суть. Но они «не замечают», что существует третий постулат. Он касается интерпретации пространственно-временных отношений в специальной теории относительности. Именно эйнштейновская интерпретация (объяснение), опирающаяся на «мысленные эксперименты», создала те «парадоксы» (точнее: логические противоречия), которые у всякого, кто стремится разобраться в сути явлений, вызывают неудовлетворение и желание переосмыслить эту теорию.
Любая физическая теория всегда имеет границы применимости. Эти границы применимости там, где теорию используют за пределами границ и получают абсурдные выводы. Это и границы во времени, когда устаревшая теория сменяется новой, имеющей более широкие пределы применимости. Теория относительности не исключение. По этой причине не следует рассматривать ее постулаты, как что-то «незыблемое». Это всего лишь гипотезы (предположения), которые могут быть оправданы практикой или же отвергнуты ей.
Преобразование Лоренца, сохраняющее уравнения Максвелла неизменными в любых инерциальных системах, описывают свойства световых лучей. Теория относительности А. Эйнштейна есть одно из возможных истолкований (объяснений) сущности и следствий этого преобразования. Таких объяснений, опирающихся на различное миропонимание (философию) может существовать множество.
В данной работе мы, опираясь на преобразование Лоренца, мы дадим по возможности полное физическое описание свойств световых лучей (электромагнитных волн), сохраняя классические (ньютоновские) представления о евклидовости пространства и единстве времени для всех инерциальных систем отсчета. При этом мы не будем опираться на изложенные ранее «постулаты» А. Эйнштейна и ошибочные положения эйнштейновской теории относительности.
1.
Способы отображения
Любое
наблюдение характеристик реального
процесса или характеристик
Это
положение будет служить
Известно, что Анри Пуанкаре за год до создания А. Эйнштейном СТО дал обобщение принципа относительности Галилея. Это обобщение позже стало одним из важных принципов теории познания [3]:
«Законы физических явлений должны быть одинаковыми как для неподвижного наблюдателя, так и для наблюдателя, движущегося прямолинейно и равномерно, поскольку у нас нет возможности убедиться в том, участвуем ли мы в таком движении или нет».
Философский принцип А. Пуанкаре фактически включает в себя оба постулата А. Эйнштейна (гипотезы). Эти гипотезы были сформулированы Эйнштейном, опираясь на принцип Галилея-Пуанкаре, но без упоминания имени Пуанкаре. Многие исследователи отмечают эту научную нечистоплотность. Мы отказываемся от эйнштейновских постулатов, поскольку философский принцип Галилея-Пуанкаре имеет более высокий научный статус, нежели частнонаучные гипотезы, предложенные Эйнштейном.
Проблема на заре 20 века заключалась в том, как применить этот принцип к классической электродинамике и согласовать ее с классической механикой. На наш взгляд Эйнштейн «приватизировал» правильное направление. Однако он так до конца не смог осмыслить и продолжить развитие идеи Пуанкаре. Мировоззренческие и физические ошибки породили СТО, полную логических противоречий (парадоксов). Конечно, каждый человек имеет право высказывать свое мнение. Но научное сообщество должно уметь четко отделять «зерна от плевел». А для этого необходимо стоять на материалистических мировоззренческих позициях и твердо опираться на материалистическую теорию познания объективной истины [4].
А.
Предварительные замечания. Напомним,
что время едино для всех инерциальных
систем, а пространство является общим
для них. Преобразование Лоренца сохраняет
инвариантной форму уравнений Максвелла,
которые описывают электромагнитные волны
(свет). Поэтому, в первую
очередь, эти преобразования применимы
к световым явлениям. С них мы и начнем
анализ. Преобразование Лоренца удобно
выражать через приращения (интервалов
времени и пространственных отрезков):
(2.1)
Оно связывает пространственные интервалы и интервалы времени в системе отсчета, например, источника света, с теми пространственно-временными интервалами, которые будут передаваться с помощью света в систему отсчета движущегося наблюдателя и регистрироваться в ней. То, что информация передается светом, важный момент, который всегда следует иметь в виду. Как известно, при движении точечного источника светового излучения имеют место три важных эффекта: явление аберрации света, эффект Доплера и эффект искажения фронта световой волны. В силу этого для различения интервалов в разных системах отсчета мы будем ставить штрихи у переменных, относящихся к системе отсчета источника света.
Мы начнем обсуждение с эффекта Доплера. Значение термина "Аберрация света" в Энциклопедическом словаре Брокгауза и Ефрона формулируется следующим образом:
«Аберрация света состоит в том, что мы, наблюдая звезду, видим последнюю не в том месте, где она находится, вследствие движения Земли вокруг Солнца и времени, необходимого для распространения света. Если бы Земля была недвижима или если бы свет распространялся мгновенно, то и световой аберрации не существовало бы. Поэтому, определяя положение звезды на небе посредством зрительной трубы, мы должны отсчитать не тот угол, под которым наклонена звезда, а несколько — впрочем, очень мало, как сказано ниже, — увеличив его в сторону движения Земли….».
В
момент наблюдения мы будем видеть наблюдаемое
(«кажущееся») положение движущегося источника
света. Сам же источник сместится за время
прохождения света от него к наблюдателю,
и будет находиться уже в другой точке.
Если рассматривать две инерциальные
системы (система источника и система
наблюдателя), то возникает вопрос: какова
скорость их относительного движения?
Он закономерен, поскольку мы имеем фактически
две скорости. Одна из них наблюдаемая
скорость v(t), связанна с видимым
положением источника, другая V связана
с действительным положением источника.
В общем случае эти скорости могут быть
различны.
Рис.
1
Эйнштейн «прозевал» этот важный момент. Он принял наблюдаемую скорость v(t) за действительную относительную скорость инерциальных систем. На самом деле только скорость V является действительной скоростью относительного движения.
Наблюдаемая скорость v(t) есть «искаженное отображение» действительной скорости движения в системе отсчета наблюдателя, полученное с помощью световых лучей. Если скорость V является характеристикой сущности, то наблюдаемая скорость v(t) это явление. Мы не будем здесь останавливаться на описании категорий «явление и сущность». О них мы подробно написали в работе «Аберрация света и парадокс Эренфеста» [5].
Б. Измерение скорости v(t). Относительную скорость движения v(t) можно измерить разными способами. Штрихи у символов будут всегда относиться к системе отсчета, связанной с источником светового сигнала (базовая система отсчета).
В базовой системе отсчета световой луч не испытывает аберрации, отсутствуют эффект Доплера и искажение фронта светового сигнала.
Первый способ. Он рассмотрен в [6]. В системе К' имеется неподвижный источник, который излучает короткие световые импульсы через равные интервалы времени DT'. В системе К мы будем видеть траекторию, "разделенную" этими вспышками на равные пространственные интервалы Dx, которые покоятся в системе К. Измеряя интервал времени между вспышками DT, в системе К можно определить наблюдаемую (кажущуюся) скорость движения инерциальных систем. "Кажущейся" мы называем эту скорость потому, что мы наблюдаем в системе К "искаженный" движением интервал времени DT’.
Из
(2.1) следует
(2.2)
Наблюдаемая скорость равна:
Второй
способ [6]. Мы можем в системе
К' разместить линейку длиной Dx'
, ориентированную вдоль скорости относительного
движения инерциальных систем. В системе
К траекторией движения будет прямая
линия, на которой мы зафиксируем неподвижную
точку. Измеряя время DT, за которое линейка
проходит эту точку, можно вычислить скорость
движения v(t). Эта скорость будет
также зависеть от угла наблюдения q.
(2.3)
Независимо от способа измерений, мы имеем один и тот же результат. Замедление скорости имеет интересные следствия. Если v/c > 0.5, то при малых углах наблюдения q наблюдаемая скорость движения объекта будет превышать скорость света в вакууме.
Полученный результат имеет интересные следствия.
Во-первых, когда источник света виден наблюдателю под углом q = 90о, мы имеем v(t) = v. Здесь наблюдаемая скорость совпадает с относительной скоростью движения инерциальных систем К' и К, которая входит в преобразование Лоренца. Скорость v, входящая в преобразование Лоренца, есть наблюдаемая скорость относительного движения инерциальных систем отсчета (явление). Она не является действительной скоростью относительного движения инерциальных систем отсчета.