Автор работы: Пользователь скрыл имя, 31 Мая 2012 в 07:58, реферат
Многообразные движения тел в окружающем нас мире можно разделить на два класса в зависимости от того, остается ли тело в процессе движения вблизи некоторого среднего положения или такого положения нет. Мы обратимся к первому классу. Отличительной чертой многих движений рассматриваемого класса является их периодичность, т. е. повторяемость через определенные интервалы времени. Движения, которые точно или приблизительно повторяются через одинаковые промежутки времени, называются механическими колебаниями.
МЕХАНИЧЕСКИЕ
КОЛЕБАНИЯ И ВОЛНЫ
1.
Механические колебания
Многообразные движения тел в окружающем нас мире можно разделить на два класса в зависимости от того, остается ли тело в процессе движения вблизи некоторого среднего положения или такого положения нет. Мы обратимся к первому классу. Отличительной чертой многих движений рассматриваемого класса является их периодичность, т. е. повторяемость через определенные интервалы времени.
Движения, которые точно или приблизительно повторяются через одинаковые промежутки времени, называются механическими колебаниями.
Колебания бывают разные. Одни колебания, как, например, в швейной машине, способны совершаться только тогда, когда на тело действуют периодически изменяющиеся внешние силы, которые и вынуждают тело совершать колебательное движение. Такие колебания называют вынужденными. Другие же колебания обусловлены действием внутренних сил и потому способны происходить сами по себе. Таковы, например, колебания грузика на пружине, возникающие после того, как грузик сместили из положения равновесия и отпустили.
Колебания, происходящие под действием внутренних сил и возникающие в системе после того, как система была выведена из состояния равновесия и предоставлена самой себе, называются свободными.
К
свободным колебаниям
Отличительной особенностью систем, в которых происходят свободные колебания, является наличие у них положения устойчивого равновесия. Именно около этих положений и совершаются свободные колебания.
Для того чтобы в той или иной системе возникли свободные колебания, необходимо выполнение следующих условий:
1. Системе должна быть сообщена избыточная энергия. Эту энергию можно сообщить системе либо в виде потенциальной энергии, либо в виде кинетической энергии, либо в виде и той и другой.
2. Избыточная энергия, сообщенная системе, не должна в процессе возникшего движения полностью тратиться на преодоление трения.
Эти два условия являются необходимыми, но не достаточными для существования свободных колебаний. Система, помимо этого, должна обладать еще некоторыми определенными свойствами, которые могут послужить причиной возникновения в системе колебаний.
Основные кинематические характеристики колебаний:
1) амплитуда колебаний (А)— это максимальное расстояние, на которое удаляется колеблющееся тело от своего положения равновесия. Амплитуда свободных колебаний определяется начальными условиями, измеряется амплитуда в метрах;
2) период колебания (Т)— это минимальный промежуток времени, по истечении которого система возвращается в прежнее состояние; иначе говоря, период колебания — это время, за которое совершается одно полное колебание;
3) частота колебаний (υ)— это число колебаний, совершаемых за 1 с, измеряется в герцах (Гц);
4) циклическая частота (w)— это величина, в 2π раз большая частоты.
Физический
смысл циклической частоты
Для периода, частоты
и циклической частоты
где п — число колебаний, а t — время, за которое произошло п колебаний.
В процессе свободных колебаний положение колеблющегося тела непрерывно изменяется. Если трение настолько мало, что им можно пренебречь, то графиком зависимости координаты колеблющегося тела (материальной точки) от времени является синусоидальная кривая, или, кратко, синусоида.
График зависимости координаты колеблющегося тела от времени называют графиком колебаний. По графику колебаний легко определяются все кинематические характеристики колебательного движения.
Колебания, при которых координата колеблющегося тела меняется с течением времени по закону синуса (или косинуса), называются гармоническими.
Если момент
начала отсчета времени
т. е. колебания будут синусоидальными и происходить без начальной фазы α0. х – смещение маятника.
Если
момент начала отсчета времени
колебаний не совпадает ни
с моментом максимального
Фаза колебаний α – это величина, которая позволяет определить, какая доля периода прошла с момента начала колебаний и наиболее полно характеризует колебательный процесс:
Задачи
механических колебаний можно условно
разделить на четыре группы: задачи
на уравнения гармонических
Пружинный маятник.
Колебательная система в этом случае представляет собой совокупность некоторого тела и прикрепленной к нему пружины. Пружина может располагаться либо вертикально (вертикальный пружинный маятник), либо горизонтально (горизонтальный пружинный маятник).
где ах – ускорение, т - масса, х - смещение пружины, k – жесткость пружины.
Это уравнение называют уравнением свободных колебаний пружинного маятника.
Оно правильно
описывает рассматриваемые
1)силы трения, действующие на тело, пренебрежимо малы и поэтому их можно не учитывать;
2) деформации
пружины в процессе колебаний
тела невелики, так что можно
их считать упругими и в
соответствии с этим
Свободные колебания пружинного маятника имеют следующие причины.
1.
Действие на тело силы
2.
Инертность колеблющегося тела,
благодаря которой оно не
Выражение для циклической частоты имеет вид:
где w - циклическая частота, k - жесткость пружины, т - масса.
Эта формула показывает, что частота свободных колебаний не зависит от начальных условий и полностью определяется собственными характеристиками самой колебательной системы — в данном случае жесткостью k и массой т.
Это
выражение определяет период свободных
колебаний пружинного маятника.
Математический
маятник
Математический маятник — это материальная точка, подвешенная на невесомой и нерастяжимой нити, находящейся в поле тяжести Земли. Математический маятник — это идеализированная модель, правильно описывающая реальный маятник лишь при определенных условиях. Реальный маятник можно считать математическим, если длина нити много больше размеров подвешенного на ней тела, масса нити ничтожна мала по сравнению с массой тела, а деформации нити настолько малы, что ими вообще можно пренебречь.
Колебательную систему в данном случае образуют нить, присоединенное к ней тело и Земля, без которой эта система не могла бы служить маятником.
где ах – ускорение, g – ускорение свободного падения, х - смещение, l – длина нити маятника.
Это уравнение называется уравнением свободных колебаний математического маятника. Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:
1) будем считать, что силы трения, действующие на тело, пренебрежимо малы и потому, их можно не учитывать;
2) рассматриваются лишь малые колебания маятника с небольшим углом размаха.
Свободные колебания любых систем во всех случаях описываются аналогичными уравнениями.
Причинами свободных колебаний математического маятника являются:
1. Действие на маятник силы натяжения и силы тяжести, препятствующей его смещению из положения равновесия и заставляющей его снова опускаться.
2.
Инертность маятника, благодаря
которой он, сохраняя свою скорость,
не останавливается в
Период
свободных колебаний
Период
свободных колебаний
Превращение
энергии при гармонических
колебаниях
При гармонических колебаниях пружинного маятника происходят превращения потенциальной энергии упруго деформированного тела в его кинетическую энергию , где k – коэффициент упругости, х - модуль смещения маятника из положения равновесия, m - масса маятника, v - его скорость. В соответствии с уравнением гармонических колебаний:
Полная энергия пружинного маятника:
Полная энергия для математического маятника:
В случае математического маятника
Превращения энергии при колебаниях пружинного маятника происходи в соответствии с законом сохранения механической энергии ( ). При движении маятника вниз или вверх от положения равновесия его потенциальная энергия увеличивается, а кинетическая - уменьшается. Когда маятник проходит положение равновесия (х = 0), его потенциальная энергия равна нулю и кинетическая энергия маятника имеет наибольшее значение, равное его полной энергии.
Таким образом,
в процессе свободных колебаний
маятника его потенциальная энергия
превращается в кинетическую, кинетическая
в потенциальную, потенциальная затем
снова в кинетическую и т. д. Но полная
механическая энергия при этом остается
неизменной.
Вынужденные
колебания. Резонанс.
Колебания, происходящие под действием внешней периодической силы, называются вынужденными колебаниями. Внешняя периодическая сила, называемая вынуждающей, сообщает колебательной системе дополнительную энергию, которая идет на восполнение энергетических потерь, происходящих из-за трения. Если вынуждающая сила изменяется во времени по закону синуса или косинуса, то вынужденные колебания будут гармоническими и незатухающими.
В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из состояния равновесия), в случае вынужденных колебаний система поглощает эту энергию от источника внешней периодической силы непрерывно. Эта энергия восполняет потери, расходуемые на преодоление трения, и потому полная энергия колебательной системы no-прежнему остается неизменной.