Квантовые точки

Автор работы: Пользователь скрыл имя, 28 Марта 2012 в 15:05, реферат

Краткое описание

Простейшая квантовая структура, в которой движение электрона ограничена в одном направлении,- это тонкая пленка или просто достаточно тонкий слой полупроводника. Именно на тонких пленках полуметалла висмута и полупроводника InSb впервые наблюдались эффекты размерного квантования. В настоящее время квантовые структуры изготавливают иначе.

Содержание работы


Ведение. Как создаются квантовые структуры
3
Кванотовые ямы
3
Квантовые точки
5
Метод молекулярно-лучевой эпитаксии
6
Мосгидридная газофазная эпитаксия
7
Метод коллоидного синтеза

7
Применение квантовых точек

8
Лазеры на квантовых точках

13
Лазеры с квантовыми каскадами

13
Лазер на квантовой яме
15
Квантовые нити
16
Методы изготовления квантовых нитей
16
Парктическое применение квантовых нитей
17
Заключение
19
Список литературы

Содержимое работы - 1 файл

квантовые точки.реф.doc

— 299.00 Кб (Скачать файл)

Чем меньше геометрические размеры активной области, тем больший градиент плотности состояний можно создать. Лазеры с квантово-размерной активной областью позволяют получать генерацию в непрерывном режиме при комнатной температуре и уменьшить пороговый ток начала генерации до величин порядка 50 А/см2. Другая особенность КТ в том, что они не имеют состояний, которые не принимают участия в генерации излучения, но при этом содержат электроны. Это приводит к уменьшению потерь энергии накачки и позволяет уменьшить пороговый ток.

Частота генерации может легко меняться в зависимости от размера выращенных наночастиц. Таким образом, лазеры на КТ обладают большим коэффициентом усиления, более высокой рабочей температурой, для них необходима меньшая пороговая плотность тока, ими легче управлять, чем традиционными полупроводниковыми лазерами.

Характерные особенности КТ — весьма широкий спектр поглощения и узкий спектр излучения, благодаря чему удается строить флюоресцирующие системы в широком диапазоне от УФ до ИК частей спектра. В настоящее время ведутся исследования по разработке газоразрядных источников света на основе кластеров тугоплавких металлов. Утверждается, что интенсивность излучения газоразрядных источников на основе вольфрамовых или молибденовых КТ намного больше, чем интенсивность излучения традиционных ртутных люминесцентных ламп. На основе КТ можно изготавливать светодиоды повышенной яркости, а также специальные покрытия для существующих источников света, корригирующие спектр излучения.

Не секрет, что люминесцентные лампы обладают слишком «холодным» спектром излучения. Многочисленные попытки откорректировать спектр с помощью светофильтров и специальных отражателей серьезного успеха до сих пор не имели. В исследовании Майкла Бауэрса из университета Вандербильта показана возможность создания полимерного покрытия из смеси КТ с полиуретаном, которое позволяет сдвигать спектр излучения синего светодиода в желтую сторону, делая его похожим на спектр излучения традиционных ламп накаливания.

КТ можно использовать практически во всех сферах, в которых нашли широкое применение современные полупроводники, например, в области производства высокопроизводительных солнечных батарей, светоизлучающих и фотодиодов, фотодетекторов и даже одноэлектронных транзисторов. Однако специфические особенности КТ значительно расширяют спектр их применения. Флюоресцирующие маркеры на основе КТ можно использовать для получения изображения глубоко залегающих тканей. Например, если ввести внутривенно взвесь квантовых точек с зеленым спектром излучения, то через кожу станет видна сеть кровеносных сосудов в виде характерного зеленого «деревца». Таким образом, можно легко диагностировать поврежденные сосуды и аневризмы.

 

Рисунок 12. Схематическое изображение (слева вверху) квантовой точки (QD), к которой пришиты молекулы, способные прилипать только к поверхности определённого состава. Внизу показана суспензия квантовых точек разного диаметра.

В настоящее время разрабатываются методики снабжения КТ антителами, имеющими сродство к поверхностным антигенамопухолевых клеток. При этом возможно несколько вариантов использования данной технологии. Комплекс «КТ – антитело» можно использовать для обнаружения опухолевых клеток в организме и визуализации х. Благодаря узкому спектру излучения КТ, их люминесценцию легко отличить от естественных излучений человеческого тела. Если комплекс «КТ – антитело» снабдить магнитными или золотыми наночастицами, то, кроме визуализации опухолевых клеток, возможно безоперационное уничтожение их путем теплового нагрева. Если же комплекс «КТ – антитело – магнитная наночастица» снабдить молекулярными захватами, то такой наноманипулятор сможет эффективно захватывать опухолевые или бактериальные клетки в кровотоке и доставлять их к точке сбора, находящейся, например, на диализной мембране.

Комплексы «КТ – антитело» могут быть использованы в так называемых «лабораториях на чипе». На каждом квадратном миллиметре такого устройства размещаются сотни ячеек с комплексами «КТ – антитело» или комплексами «КТ – РНК». Каждый из таких комплексов специфичен для своего участка ДНК, если производится генная диагностика и используется комплекс «КТ – РНК», или для какого-нибудь антигена бактериального или вирусного происхождения, если микрочип используется для детектирования инфекции. После нанесения на чип капли исследуемой крови происходит избирательное связывание антигенов с наночастицами в тех ячейках, где нанокомплексы оказываются комплиментарны соответствующим антигенам. После этого микрочип просматривают под микроскопом. Поскольку цвет наночастиц существенно зависит от их размера, в тех ячейках, где произошло связывание, изменяется цвет. Процедура может быть автоматизирована с помощью колориметрических анализаторов. Процесс проведения такого анализа занимает считаные минуты. За это время можно будет протестировать весь геном человека на большинство известных генных аномалий или провести моментальную идентификацию какого-либо инфекционного агента, что особенно актуально в условиях массовых эпидемий.

В биологических исследованиях нанокомплексы на основе КТ могут использоваться для окрашивания и визуализации различных внутриклеточных структур, которые в норме прозрачны и под микроскопом не видны. Однако до широкого практического внедрения данных технологий необходимо решить еще много технологических проблем.

Прежде всего, вопрос токсичности. На данный момент совершенно неясно, как поведут себя полупроводниковые КТ в организме в долгосрочной перспективе, поскольку большинство химических соединений, используемых для производства КТ, для человеческого  организма токсичны. Однозначных исследований на эту тему проведено очень мало. Кроме того, сложно подобрать хорошие линкеры, которые могли бы достаточно прочно связывать с КТ различные антитела или лекарственные препараты и освобождать их по мере надобности.

Активные исследования в этой области продолжаются. Поэтому на данном этапе наибольшее применение КТ находят в технике. Уже созданы прототипы ярких и гибких дисплеев на КТ. Благодаря высокому квантовому выходу (до 70%), по контрастности и яркости такие дисплеи будут значительно превосходить существующие жидкокристаллические.

Интересное применение КТ предложено учеными из Израиля. Они создали нанокомплексы из полупроводниковых КТ CdSe/ZnS, связанных с никотинамид аденин динуклеотидом (NAD+), который является универсальным акцептором электронов и обладает способностью гасить фотолюминесценцию КТ. Таким образом, возбужденный внешним излучением электрон в КТ, переходит на NAD и восстанавливает его, что не позволяет электрону вернуться на нижний уровень КТ с испусканием кванта света. Если нанокомплексы присутствуют в растворе, где проходит реакция, сопровождающаяся процессами окисления, или присутствуют доноры электронов, то интенсивность свечения КТ увеличивается, так как связанные с нанокомплексами NAD+ перехватывают электроны, а восстановленный NADН фотолюминесценцию не гасит.

Авторы утверждают, что по изменению интенсивности фотолюминесценции можно с высокой степенью достоверности распознавать в смеси присутствие каких-либо опасных веществ, например гексогена. Пожалуй, наиболее многообещающим направлением исследования применения КТ следует считать возможность создания на их основе квантовых компьютеров. Как известно, квантовый компьютер является вычислительным устройством, которое в процессе своих вычислений использует преимущественно такие квантовомеханические эффекты, как квантовый параллелизм и запутанность. По аналогии с обычной информатикой за элементарную единицу информации в квантовых вычислениях принимается кубит. Квантовый кубит является квантовой системой, которая может принимать два состояния — 0 и 1.

Это могут быть, например, два электрона с противоположно направленными спинами. Несколько связанных между собой кубитов образуют элементарную вычислительную ячейку — регистр. Преимущество квантовых вычислительных систем заключается в том, что благодаря принципу запутанности, изменяя состояние одного кубита в регистре мы можем, без дополнительных затрат энергии и тактов процессора, изменить состояние всех других кубитов в регистре и тем самым получить возможность использовать всю мощь квантового параллелизма в вычислениях. Допустим, у нас есть квантовая система из L двухуровневых квантовых кубитов.

Такая система может иметь 2L независимых состояний и, таким образом, за счет квантового параллелизма выполнять параллельно 2L операций. Так как все состояния являются запутанными, то есть квантовомеханически связанными, состояния всех кубитов в регистре меняются одновременно. Теоретически такой компьютер будет работать в экспоненциальное число раз производительнее, чем классический. За последние годы в качестве кандидатов на физическую реализацию предложено множество различных квантовых систем, в том числе спиновые состояния электронов, сверхпроводящие кольца с противоположно направленными токами, замысловатые полупроводниковые структуры. В некоторых последних разработках в качестве физической основы для реализации кубитовых регистров используют квантовые точки [12].

Подбирая размеры КТ и количество атомов в них, можно добиться состояния, когда КТ содержит всего один свободный электрон. Располагая на подложке такие КТ достаточно близко друг от друга, можно добиться того, что электроны в них начнут взаимодействовать своими спинами и окажутся квантовомеханически связанными. Тогда меняя с помощью лазерного импульса состояние одного из электронов, можно влиять на состояние спина электронов всех остальных КТ в квантовом регистре. Периодически на технических выставках даже демонстрируются вроде бы работающие прототипы, однако до массового производства квантовых чипов по-прежнему очень далеко, поскольку, несмотря на крайне заманчивые перспективы реализации квантовых компьютеров, их практическая реализация все еще остается трудно достижимой. Главным образом, это происходит из-за неустойчивости квантовых состояний и технологических трудностей.

Постепенно, с течением времени выяснилось, что КТ являются хорошей физической моделью для изучения поведения реальных атомов вещества. В некоторых случаях их даже называют искусственными атомами. В принципе, КТ можно попытаться собрать в некоторое подобие вещества, и такие эксперименты успешно проводятся [14]. Таким образом, потенциальная сфера применения КТ огромна и продолжает расширяться. Однако если говорить о практическом применении КТ, можно отметить, что существует ряд принципиальных трудностей, которые сильно ограничивают практические разработки. Прежде всего, это сложности технологического характера. Подбор состава материалов и параметров роста КТ в различных режимах пока в значительной степени остается эмпирическим. Не удается с уверенностью наладить производство упорядоченных массивов КТ на подложках. В стадии разработки находятся различные нелинейные элементы на КТ. Например, те же одноэлектронные транзисторы. Эти и многие другие технологические вопросы все еще ждут своего окончательного решения.

 

Лазеры на квантовых точках

 

Кроме слоев с обычными квантовыми ямами, для производства лазеров с продольными металлическими брэгговскими решетками используются структуры с квантовыми точками.

В них квантовая яма заменяется маленькими п/п островками размером порядка несколько нанометров, которые подчиняются квантово-механическим ограничениям. Такие материалы с квантовыми точками обеспечивают усиление в большем спектральном диапазоне. Это означает, что для производимых ОМ ЛД будет доступен более широкий спектральный диапазон [8].

Более того, лазеры на основе квантовых точек имеют более низкий порог плотности тока и меньшую температурную зависимость порогового тока по сравнению с лазерами на квантовых ямах. Эта особенность дает возможность таким приборам работать при более высокой рабочей температуре.

 

 

Лазеры с квантовыми каскадами

 

Одно из типичных приложений (указанных выше), где применяются сенсоры на основе DFB-лазеров, использует тот факт, что вращательно-колебательные переходы в любых важных (с точки зрения приложений) газах и жидкостях, расположены в близком ИК-диапазоне, то есть в спектральном диапазоне излучения лазеров на квантовых ямах и квантовых точках. Однако множественность этих переходов ярко демонстрирует концентрацию поглощения в среднем ИК-диапазоне (то есть вращательно-колебательные переходы между основными электронными состояниями), которые на порядок выше тех, что имеют место в близком ИК-диапазоне (и обусловлены вращательно-колебательными переходами между возбужденными электронными состояниями). Поэтому когерентный ОМ-источник света в среднем ИК-диапазоне может дать больше преимуществ для приложений, использующих его в качестве сенсора, особенно если требуются высокая чувствительность и широкие пределы детектирования. До сих пор этот спектральный диапазон был доступен только лазерам на солях свинца, которые требуют дорогого и затратного по времени охлаждения жидким азотом. С появлением несколько лет назад так называемых лазеров на квантовых каскадах (QCL) стали доступны новые п/п источники света в среднем ИК-диапазоне, которые могут работать при комнатной температуре или чуть ниже ее. Лазеры QCL –однополярные приборы, то есть их световое излучение – результат внутризонных переходов электронов в зоне проводимости. Технологически приборы формируются как последовательность специально спроектированных эпитаксиальных слоев в процессе роста структуры. Лазеры типа QCL не имеют каких-то фундаментальных ограничений на верхнюю граничную длину волны излучения. Так, длины волн большие, чем 3,4 мкм, можно реализовать с помощью QCL на основе InP, а излучение в спектральном диапазоне выше 8 мкм становится возможным при использовании GaAs-подложек.

Информация о работе Квантовые точки