Автор работы: Пользователь скрыл имя, 21 Декабря 2012 в 16:00, реферат
А-ннезатухающие колебания, которые могут существовать в какой-либо системе при отсутствии переменного внешнего воздействия, причём амплитуда и период колебаний определяются свойствами самой системы. Этим А. отличаются от вынужденных колебаний (См. Вынужденные колебания), амплитуда и период которых определяются характером внешнего воздействия (приставка «авто» и указывает на то, что колебания возникают в самой системе, а не навязываются внешним воздействием).
Автоколебания.
Генератор незатухающих колебаний.
Вынужденные электромагнитные колебания.
Переменный ток и характеризуемые ее величины.
Устройства, в которых электрическая энергия полностью и необратимо преобразуется в другие виды энергии, называют активными нагрузками, а электрические сопротивления этих устройств - активными сопротивлениями. В цепи постоянного тока существуют только активные нагрузки.
Устройства, в которых не происходит необратимого превращения электрической энергии в другие виды энергии, называют реактивными нагрузками, а их сопротивления - реактивными сопротивлениями. Реактивные сопротивления в цепи переменного тока имеют конденсатор и катушка индуктивности, которые соответственно называют емкостным xc сопротивлением и индуктивным сопротивлением xL. При этом конденсатор имеет только реактивное сопротивление, а катушка индуктивности, помимо реактивного сопротивления, обладает еще активным сопротивлением. Реактивные сопротивления вычисляются по формулам:
, (8)
, (9)
где: С - емкость конденсатора;
L - индуктивность катушки;
w - частота изменения э.д.с. источника тока.
Если в цепи переменного тока реактивной нагрузки нет или ее сопротивление пренебрежимо мало по сравнению с активным сопротивлением цепи, то колебания силы тока совпадают по фазе с колебаниями напряжения и происходят с частотой и фазой колебаний э.д.с. источника тока:
, (10)
, (11)
. (12)
Цепь переменного тока, которая не содержит конденсатора и активное сопротивление которой ничтожно мало по сравнению с индуктивным сопротивлением, называется цепью переменного тока с индуктивным сопротивлением. В такой цепи колебания напряжения на катушке опережает колебания силы тока на π/2, т.е.:
, (13)
. (14)
Цепь переменного тока, которая не имеет индуктивного сопротивления и активное сопротивление которой пренебрежимо мало по сравнению с емкостным сопротивлением, называется цепью переменного тока с емкостным сопротивлением. В такой цепи колебания силы тока опережают колебания напряжения на π/2:
, (15)
. (16)
Для амплитудного и действующего значений переменного тока справедлив закон Ома:
, (17)
, (18)
, (19)
где величина R называется полным сопротивлением цепи переменного тока.
Количество теплоты Q, выделяющееся на активном сопротивлении, вычисляется по закону Джоуля-Ленца:
. (20)
Величина преобразованной
. (21)
Мощность называют активной мощностью. Множитель cosφ называют коэффициентом мощности, где: j - сдвиг по фазе между колебаниями силы тока и напряжения. Коэффициент мощности вычисляется по формуле:
. (22)
Для преобразования переменного тока одного напряжения в переменный ток другого напряжения при той же частоте используют устройство, называемое трансформатором. Трансформатор представляет собой систему, состоящую из двух обмоток (катушек), связанных одним сердечником. Если первоначально катушка содержит N1 витков, а вторичная - N2 витков, то коэффициент трансформации k вычисляется по формуле:
, (23)
где e1 и e2 - э.д.с. индукции в первичной и вторичной обмотках.
Если падение напряжения на активном сопротивлении первичной обмотки трансформатора ничтожно мало, то: ε1 = u1 и ε2 = u2. Тогда:
, (24)
где U1 и U2 - напряжение на первичной и вторичной обмотках трансформатора.
К.п.д. трансформатора называют отношение мощности Р2, отдаваемой вторичной обмоткой, к мощности Р1, подводимой к первичной обмотке:
. (25)
К.п.д. современных трансформаторов очень высок - 97-98 %. Поэтому по закону сохранения энергии мощность тока в первичной обмотке практически равна мощности тока во вторичной обмотке: Р1 Р2. Отсюда следует, что: J1U1 J2U2.
Тогда формулу (24) можно записать в виде:
, (26)
где: J1, J01 - действующее и амплитудное значения тока в первичной обмотке;
J2, J02 -действующее и амплитудное значения тока во вторичной обмотке.
4. ПЕРЕМЕННЫЙ
ТОК И ХАРАКТЕРИЗУЕМЫЕ ЕЕ
Ток, периодически меняющийся по величине и направлению, называется переменным током. Представление о переменном токе можно получить, если медленно вращать ручку действующей модели генератора, подключенного к гальванометру. Отклонение стрелки гальванометра то вправо, то влево говорит о периодическом изменении величины и направления тока в цепи, т.е. о переменном токе.
Переменный ток, используемый в производстве и быту, изменяется по синусоидальному закону:
i = Im sinω t ,
где i — значение переменного тока в любой момент времени, называемое мгновенным значением переменного тока. Величина Im, стоящая перед знаком синуса, называется амплитудой переменного тока.
Амплитуда - это наибольшее
положительное или
Графиком переменного тока является синусоида:
Для демонстрации синусоидального изменения переменного тока сети нужно реостат включить в сеть как потенциометр. Снимаемое с реостата напряжение подать на горизонтальные пластины включенного в сеть электронного осциллографа. На экране осциллографа получим синусоиду, которая свидетельствует о синусоидальном изменении напряжения на горизонтальных обкладках конденсатора осциллографа, а также о синусоидальном изменении тока в реостате и напряжения в сети.
Кроме амплитуды, переменный ток характеризуется такими величинами, как период, частота, действующее значение.
Периодом (T) называется время, в течение которого происходит полное изменение (колебание) тока в проводнике.
Частотой (f) называется величина, выражающаяся числом полных колебаний тока за одну секунду. Частота измеряется в герцах (Гц). При частоте в 1 Гц происходит одно полное колебание тока за одну секунду.
Стандартной частотой переменного тока является частота 50 Гц, что соответствует 50 полным колебаниям тока за одну секунду.
Частота - величина, обратная периоду. Следовательно,
f = 1/T или T = 1/f
Переменный ток, как и постоянный, оказывает тепловое, механическое, магнитное и химическое действия. В формулы расчета теплового, механического, магнитного и химического действий переменного тока подставляется действующее значение переменного тока.
Действующим значением переменного тока называется постоянный ток, который за время одного периода оказывает такое тепловое (механическое и др.) действие, как и данный переменный ток. Действующее значение для данного переменного тока есть величина постоянная и равная амплитудному значению, деленному на √2, т. е.
IД Im
√2
Все определения и соотношения действующего значения переменного тока справедливы и для переменного напряжения.
Амперметр и вольтметр, работа которых основана на тепловом или механическом действии, при измерении переменного тока и напряжения показывают их действующие значения.
Определим амплитудное значение напряжения в сети, если при сопротивлении цепи 40 Ом амперметр показывает ток 5,5 А.
Из закона Ома напряжение равно U = Ir. Подставив вместо I и r их значения, получим действующее значение напряжения U = 5,5×40 = 220 В.
А так как Um = √2U, то Um= 1,41×220 = 310,2 В.