Автор работы: Пользователь скрыл имя, 21 Декабря 2012 в 16:00, реферат
А-ннезатухающие колебания, которые могут существовать в какой-либо системе при отсутствии переменного внешнего воздействия, причём амплитуда и период колебаний определяются свойствами самой системы. Этим А. отличаются от вынужденных колебаний (См. Вынужденные колебания), амплитуда и период которых определяются характером внешнего воздействия (приставка «авто» и указывает на то, что колебания возникают в самой системе, а не навязываются внешним воздействием).
Автоколебания.
Генератор незатухающих колебаний.
Вынужденные электромагнитные колебания.
Переменный ток и характеризуемые ее величины.
САБИР РАХИМОВСКИЙ
АКАДЕМИЧЕСКИЙ ЛИЦЕЙ ПРИ
ИМЕНИ МИРЗО УЛУГБЕКА
На тему: АВТОКОЛЕБАНИЯ
Выполнила: Ученица 211- группы Тошева Наргиза
ТАШКЕНТ 2010
План:
1. АВТОКОЛЕБАНИЯ
А-ннезатухающие колебания, которые могут существовать в какой-либо системе при отсутствии переменного внешнего воздействия, причём амплитуда и период колебаний определяются свойствами самой системы. Этим А. отличаются от вынужденных колебаний (См. Вынужденные колебания), амплитуда и период которых определяются характером внешнего воздействия (приставка «авто» и указывает на то, что колебания возникают в самой системе, а не навязываются внешним воздействием). А. отличаются и от свободных колебаний (например, колебаний свободно подвешенного маятника, колебаний силы тока в электрическом контуре) тем, что, во-первых, свободные колебания постепенно затухают, во-вторых, их амплитуда зависит от первоначального «толчка», создающего эти колебания. Примерами А. могут служить колебания, совершаемые маятником часов, колебания струны в смычковых или столба воздуха в духовых музыкальных инструментах, электрические колебания в ламповом генераторе (см. Генерирование электрических колебаний). Системы, в которых возникают А., называются автоколебательными.
Автоколебательные системы во
многих случаях можно
В часах, например, А. осуществляются следующим образом (рис.). При прохождении качающегося балансира 1 через определённое положение (обычно дважды за период) спусковое устройство 2 и 3 подталкивает колесо балансира, сообщая ему энергию, необходимую для того, чтобы компенсировать потерю энергии за полпериода колебаний. Балансир часов совершает А. с амплитудой, целиком определяемой свойствами часового механизма. Однако для того, чтобы эти А. возникли, обычно нужно не только завести пружинный завод, но и слегка встряхнуть часы, т. е. сообщить начальный толчок балансиру. Т. о., часы — это в большинстве случаев автоколебательная система без самовозбуждения. В духовых инструментах продувание струи воздуха поддерживает А. столба воздуха в трубе инструмента, а в струнных смычковых инструментах А. поддерживаются силой трения, действующей между смычком и струной.
Чтобы колебания были
Обычно при значениях
Однако в некоторых случаях
отклонение амплитуды
Форма А. может быть различной.
В систему с малой
Возможность установления
Спусковой механизм часов: 1 — балансир; 2 — анкерная вилка; 3 — спусковое колесо.
2. ГЕНЕРАТОР НЕЗАТУХАЮЩИХ КОЛЕБАНИЙ
В настоящее время существует большое количество самых разнообразных схем генераторов высокой частоты с самовозбуждением. Считается, что все они сводятся к индуктивной или'емкост-ной трехточке. Однако еще в 1971 г. я разработал схему, которую затрудняюсь отнести к одному из двух вышеуказанных типов. На мой взгляд, в данном случае более уместна аналогия с физическим маятником, который имеет источник пополнения энергии и, в свою очередь, часть энергии расходует на управление этим источником (не считая, разумеется, внешних потерь). Особенностью схемы является то, что колебательный LC-контур, определяющий генерируемую частоту, не связан со схемой никакими проводниками и конденсаторами. То есть имеет место только индуктивная связь, причем колебательный контур выполняет не только селективную, но и фазовращающую роль. Устройство было экспериментально проверено, подтверждена его работоспособность. Была даже подана заявка на изобретение (к сожалению, потом "зарубленная").
Все катушки (L1 ...L3) намотаны на одном общем каркасе-диаметром 19 мм в один слой проводом ПЭЛ 0,4 мм. Намотка - сплошная, виток к витку. L1 содержит 20 витков; L2 - 3 витка; L3 - 8 витков. Начала обмоток показаны на схеме. L2 и L3 расположены по разные стороны от L1. Расстояние между L1 и L2 составляет 7 мм, между L1 и L3 - 6 мм. При данных параметрах емкостью С1 перекрывается диапазон частот 14...30 МГц.
Интересно, что связь между L3 и L2 при показанном на схеме включении и отсутствии контура С1, L1 - отрицательная, поскольку каскад с общим катодом поворачивает фазу на 180°. Вдобавок, это слабая связь (при отсутствии ферромагнитного сердечника), поскольку катушки пространственно разнесены достаточно далеко. Таким образом, генерация без контура L1, С1 невозможна (влиянием паразитных параметров пренебрегаем).
СХЕМА ГЕНЕРАТОРА.
Напряжения и поля
по разную сторону от резонансной
частоты у параллельного
Понятно, что при двух усилительных каскадах, каждый из которых поворачивает фазу на 180°, концы одной из катушек связи (L2 или L3) следует поменять местами.
Физика работы данной схемы весьма наглядна по сравнению со схемами "трехточек", и действительно напоминает "физический маятник". В то же время, данная схема по принципу работы отличается от некоторых похожих схем с затягиванием частоты. Реализация такого генератора возможна и на транзисторах, причем генерацию проще получить при применении двух усилительных каскадов.
Данная схема может быть использована для бесконтактной схемы переключения поддиапазонов в приемнике. Выполнение контура в виде ключа может быть полезно для электронных замков. Кроме того, схему можно использовать для емкостных реле, т.к. связь можно регулировать очень легко (изменением расстояния между катушками).
3. ВЫНУЖДЕННЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ.
Вынужденными колебаниями
Отличительные
особенности вынужденных
Амплитуда вынужденных
колебаний зависит от частоты
изменения э.д.с. источника тока.
Для вынужденных колебаний
, (1)
где: i - мгновенное значение тока, т.е. его значение в момент времени t = 0;
J0 - амплитудное или максимальное значение силы тока;
w - частота изменения тока, численно равная частоте изменения э.д.с. источника тока.
Мгновенным или амплитудным значениями тока и напряжения на практике пользоваться неудобно. Амперметры и вольтметры в цепи переменного тока измеряют так называемые действующие или эффективные значения переменного тока, которые связаны с амплитудными значениями тока по формулам:
, (4)
. (5)
Действующими значениями силы тока и напряжения переменного тока называют значения этих величин для такого постоянного тока, который на том же активном сопротивлении выделяет за время, равное периоду Т переменного тока, такое же количество теплоты, как и данный переменный ток.
Источником переменного тока является генератор переменного тока, физический принцип действия которого основан на равномерном вращении с угловой скоростью w плоской рамки площадью S, состоящей из N витков, в однородном магнитном поле с индукцией В. При этом рамку пронизывает переменный магнитный поток:
, (6)
где: Ф0 - максимальное значение магнитного потока;
a - угол между нормалью к рамке и вектором магнитной индукции В;
w - угловая скорость вращения рамки.
Согласно закону электромагнитной индукции, в рамке будет возбуждаться мгновенное значение э.д.с., изменяющееся по закону:
, (7)
где: e - мгновенное значение э.д.с.;
e0 - амплитудное значение э.д.с.;
w - угловая скорость вращения рамки.
В общем случае цепь переменного тока представляет собой колебательный контур:
Напряжение на зажимах источника тока U меняется по гармоническому закону с частотой изменения э.д.с. генератора переменного тока.
Существует принципиальное отличие электрического сопротивления цепи переменного тока по сравнению с электрическим сопротивлением цепи постоянного тока, связанное с преобразованиями электрической энергии в другие виды энергии.