Искусственный интеллект, достижение и проблемы

Автор работы: Пользователь скрыл имя, 26 Октября 2013 в 21:13, реферат

Краткое описание

Современные философы и исследователи науки часто рассматривают междисциплинарные науки как одно из выдающихся достижений заново открытых в 20 веке. Искусственный интеллект и искусственная жизнь представляют прекрасный пример такой интеграции многих научных областей. Конечно, междисциплинарность тоже имеет свою цену. Химики, биологи, специалисты в области вычислительных наук и многие другие изучают различные аспекты живых систем, пользуясь при этом сходными методами.

Содержание работы

Введение 3
Взгляды на термин "знание" 5
Аспект представления знаний 5
Знание как основа 6
Рефлексия как одна из составляющих интеллектуальной деятельности 9
Понятие рефлексии 9
Неотъемлимость рефлексии 12
Математическо-технические аспекты реализации систем
искусственного интеллекта 13
Природа обработки естественного языка 15
Основная проблема обработки естественного языка 16
Распознавание речи 17
Практическая реализация 18
Семантические сети 20
Искусственный интеллект и теоретические проблемы психологии 21
Сознаниие и разум 23
Что такое сознание? 23
Сознание и выживание 24
Есть ли разум? 25
Чем же отличается сознание от самообучения? 26
Человек вооружен 27
Осознавание себя 27
Сознание - это не материальный предмет 28
Разумны только люди? 30
Заключение 31
Словарь терминов 33
Использованная литература 35

Содержимое работы - 1 файл

искуст.интеллект.doc

— 158.50 Кб (Скачать файл)

Прикладная NLP занимается обычно не моделированием, а непосредственно  возможностью коммуникации человека с  ЭВМ на ЕЯ. В этом случае не так  важно, как введенная фраза будет  понята с точки зрения знаний о  реальном мире, а важно извлечение информации о том, чем и как ЭВМ может быть полезной пользователю (примером может служить интерфейс экспертных систем). Кроме понимания ЕЯ, в таких системах важно также и распознавание ошибок и их коррекция.

 

Основная  проблема обработки естественного языка

Основной проблемой NLP является языковая неоднозначность. Существуют разные виды неоднозначности:

·  Синтаксическая (структурная) неоднозначность: во фразе Time flies like an arrow для ЭВМ неясно, идет ли речь о времени, которое летит, или о насекомых, т.е. является ли слово flies глаголом или существительным.

·  Смысловая неоднозначность: во фразе The man went to the bank to get some money and jumped in слово bank может означать как банк, так и берег.

·  Падежная неоднозначность: предлог in в предложениях He ran the mile in four minutes/He ran the mile in the Olympics обозначает либо время, либо место, т.е. представлены совершенно различные отношения.

·  Референциальная неоднозначность: для системы, не обладающей знаниями о реальном мире, будет затруднительно определить, с каким словом - table или cake - соотносится местоимение it во фразе I took the cake from the table and ate it.

·  Литерация (Literalness): в диалоге Can you open the door? — I feel cold ни просьба, ни ответ выражены нестандартным способом. В других обстоятельствах на вопрос может быть получен прямой ответ yes/no, но в данном случае в вопросе имплицитно выражена просьба открыть дверь.

Центральная проблема как для общей, так и для  прикладной NLP - разрешение такого рода неоднозначностей - решается с помощью перевода внешнего представления на ЕЯ в некую внутреннюю структуру. Для общей NLP такое превращение требует набора знаний о реальном мире. Так, для анализа фразы Jack took the bread from the supermarket shelf, paid for it, and left и для корректного ответа на такие вопросы, как What did Jack pay for?, What did Jack leave? и Did Jack have the bread with him when he left? необходимы знания о супермаркетах, процессах покупки и продажи и некоторые другие.

Прикладные системы NLP имеют преимущество перед общими, т.к. работают в узких предметных областях. К примеру, системе, используемой продавцами в магазинах по продаже компьютеров, не нужно ”раздумывать” над неоднозначностью слова terminals в âîïðîñå How many terminals are there in the order?.

Тем не менее, создание систем, имеющих возможность общения  на ЕЯ в широких областях, возможно, хотя пока результаты далеки от удовлетворительных.

 

Распознавание речи           

 По мере развития компьютерных систем становится все более очевидным, что использование этих систем намного расширится, если станет возможным использование человеческой речи при работе непосредственно с компьютером, и в частности станет возможным управление машиной обычным голосом в реальном времени, а также ввод и вывод информации в виде обычной человеческой речи.

Существующие  технологии распознавания речи не имеют пока достаточных возможностей для их широкого использования, но на данном этапе исследований проводится интенсивный поиск возможностей употребления коротких многозначных слов (процедур) для облегчения понимания. Распознавание речи в настоящее время нашло реальное применение в жизни, пожалуй, только в тех случаях, когда используемый словарь сокращен до 10 знаков, например при обработке номеров кредитных карт и прочих кодов доступа в базирующихся на компьютерах системах, обрабатывающих передаваемые по телефону данные. Так что насущная задача - распознавание по крайней мере 20 тысяч слов естественного языка - остается пока недостижимой. Эти возможности пока недоступны для широкого коммерческого использования. Однако ряд компаний своими силами пытается использовать уже существующие в данной области науки знания.            

 Для успешного  распознавания речи следует решить  следующие задачи:

1)   обработку словаря (фонемный состав),

2)   обработку синтаксиса,

3)   сокращение речи (включая возможное использование жестких сценариев),

4)   выбор диктора (включая возраст, пол, родной язык и диалект), тренировку дикторов,

5)   выбор особенного вида микрофона (принимая во внимание направленность и местоположение микрофона),

6)   условия работы системы и получения результата с указанием ошибок.           

 Существующие  сегодня системы распознавания  речи основываются на сборе  всей доступной (порой даже  избыточной) информации, необходимой  для распознавания слов. Исследователи  считают, что таким образом задача распознавания образца речи, основанная на качестве сигнала, подверженного изменениям, будет достаточной для распознавани, но тем не менее в настоящее время даже при распознавании небольших сообщений нормальной речи, пока невозможно после получения разнообразных реальных сигналов осуществить прямую трансформацию в лингвистические символы, что является желаемым результатом.

 

Практическая  реализация

 

 

            Разработки в области искусственного интеллекта ведутся и в Новосибирском Государственном Техническом Университете. На факультете Прикладной Математики и Информатики (ФПМиИ) элементы теории искусственного интеллекта входят в базовую программу подготовки специалистов. Одним из ведущих специалистов в данной области является профессор Хабаров В.И., зав. кафедрой Программных Систем и Баз Данных (ПСиБД). Одно из направлений его исследований связано с внедрением семантических и нейронных сетей в системы управления и анализа данных, систем накопления и представления знаний. В качестве примера можно назвать разработку CASE-технологии, базированной на ультрасетях.            

 Тенденции  развития современных информационных  технологий приводят к постоянному  возрастанию сложности информационных  систем (ИС), создаваемых в различных  областях экономики. Современные крупные проекты ИС характеризуются, как правило, следующими особенностями:

·      сложность описания (достаточно большое количество функций, процессов, элементов данных и сложные взаимосвязи между ними), требующая тщательного моделирования и анализа данных и процессов;

·      наличие совокупности тесно взаимодействующих компонентов (подсистем), имеющих свои локальные задачи и цели функционирования (например, традиционных приложений, связанных с обработкой транзакций и решением регламентных задач, и приложений аналитической обработки (поддержки принятия решений), использующих нерегламентированные запросы к данным большого объема);

·      отсутствие прямых аналогов, ограничивающее возможность использования каких-либо типовых проектных решений и прикладных систем;

·      необходимость интеграции существующих и вновь разрабатываемых приложений;

·      функционирование в неоднородной среде на нескольких аппаратных платформах;

·      разобщенность и разнородность отдельных групп разработчиков по уровню квалификации и сложившимся традициям использования тех или иных инструментальных средств;

·      существенная временная протяженность проекта, обусловленная, с одной стороны, ограниченными возможностями коллектива разработчиков, и, с другой стороны, масштабами организации-заказчика и различной степенью готовности отдельных ее подразделений к внедрению ИС.

 

 

            Несмотря на высокие потенциальные  возможности CASE-технологии (увеличение  производительности труда, улучшение  качества программных продуктов, поддержка унифицированного и согласованного стиля работы) далеко не все разработчики информационных систем, использующие CASE-средства, достигают подобных результатов. Применение семантических сетей для проектирования данного вида систем является по своей сути шагом в абсолютно новом направлении, что позволяет проектировать и внедрять интеллектуальные обучаемые системы для поддержки принятия решений.

Семантические сети           

 Семантическая  сеть - структура для представления  знаний в виде узлов, соединенных дугами. Самые первые семантические сети были разработаны в качестве языка-посредника для систем машинного перевода, а многие современные версии до сих пор сходны по своим характеристикам с естественным языком. Однако последние версии семантических сетей стали более мощными и гибкими и составляют конкуренцию фреймовым системам, логическому программированию и другим языкам представления.

Начиная с конца 50-ых годов были создано и применены  на практике десятки вариантов семантических сетей. Несмотря на то, что терминология и их структура различаются, существуют сходства, присущие практически всем семантическим сетям:

1)   узлы семантических сетей представляют собой концепты предметов, событий, состояний;

2)   различные узлы одного концепта относятся к различным значениям, если они не помечено, что они относятся к одному концепту;

3)   дуги семантических сетей создают отношения между узлами-концептами (пометки над дугами указывают на тип отношения);

4)   некоторые отношения между концептами представляют собой лингвистические падежи, такие как агент, объект, реципиент и инструмент (другие означают временные, пространственные, логические отношения и отношения между отдельными предложениями;

5)   концепты организованы по уровням в соответствии со степенью обобщенности так как, например,  сущность, живое существо, животное, плотоядное.            

 Однако существуют  и различия: понятие значения  с точки зрения философии; методы  представления кванторов общности и существования и логических операторов; способы манипулирования сетями и правила вывода, терминология. Все это варьируется от автора к автору. Несмотря не некоторые различия, сети удобны для чтения и обработки компьютером, а также достаточно мощны, чтобы представить семантику естественного языка.

 

Искусственный интеллект

и теоретические  проблемы психологии

 

 

            Можно выделить две основные  линии работ по ИИ. Первая связана  с совершенствованием самих машин,  с повышением "интеллектуальности" искусственных систем. Вторая  связана с задачей оптимизации совместной работы "искусственного интеллекта" и собственно интеллектуальных возможностей человека.           

 Переходя  к психологическим проблемам  искусственного интеллекта, можно  отметить три позиции по вопросу  о взаимодействии психологии  и искусственного интеллекта. 

1.    "Мы мало знаем о человеческом разуме, мы хотим его воссоздать, мы делаем это вопреки отсутствию знаний" - эта позиция характерна для многих зарубежных специалистов по ИИ.

2.    Вторая позиция сводится к констатации ограниченности результатов исследований интеллектуальной деятельности, проводившихся психологами, социологами и физиологами. В качестве причины указывается отсутствие адекватных методов. Решение видится в воссоздании тех или иных интеллектуальных функций в работе машин. Иными словами, если машина решает задачу ранее решавшуюся человеком,  то знания,  которые можно подчерпнуть, анализируя эту работу и есть основной материал для построения психологических теорий.

3.    Третья позиция характеризуется оценкой исследования в области искусственного  интеллекта и психологии как совершенно независимых. В этом случае допускается возможность только потребления, использования психологических  знаний  в плане психологического обеспечения работ по ИИ.           

 Популярные  идеи системного анализа позволили сделать сравнение принципов работы искусственных систем и собственно человеческой деятельности важным эвристическим приемом выделения именно специфического психологического анализа деятельности человека.           

 В 1963 г.  выступая на совещании по философским вопросам физиологии ВНД и психологии, А.Н. Леонтьев сформулировал следующую позицию: машина воспроизводит операции человеческого мышления, и следовательно соотношение "машинного" и "немашинного" есть соотнесение операционального и неоперационального в человеческой деятельности. Однако в последствии при сравнении операций, из которых слагается работа машины, и операций как единиц деятельности человека выявились существенные различия - в психологическом смысле "операция" отражает способ достижения результатов, процессуальную характеристику, в то время как применительно к машинной работе этот термин используется в логико-математическом смысле (характеризуется результатом).           

 В работах  по  искусственному  интеллекту  постоянно используется термин "цель". Анализ отношения средств к цели А.Ньюэлл и Г.Саймон называют в  качестве одной из "эвристик". В психологической теории деятельности "цель" является конституирующим признаком действия в отличии от операций  (и деятельности в целом). В то время как в искусственных системах "целью" называют некоторую конечную ситуацию к которой стремится система.  Признаки этой ситуации должны быть четко выявленными и описанными на формальном языке.  Цели человеческой деятельности  имеют другую природу. Конечная ситуация может по разному отражаться субъектом: как на понятийном уровне, так и в форме представлений или перцептивного образа. Это отражение может характеризоваться разной степенью ясности, отчетливости. Кроме того, для человека характерно не просто достижение готовых целей но и формирование новых.           

 Также работа  систем  искусственно интеллекта,  характеризуется не просто наличием операций, программ, "целей", но и оценочными функциями.  И у искусственных систем есть своего рода "ценностные ориентации". Специфику человеческой мотивационно-эмоциональной регуляции деятельности составляет  использование не только константных, но и ситуативно возникающих и динамично меняющихся  оценок,  существенно  также различие между словесно-логическими и эмоциональными оценками. В существовании потребностей и мотивов видится различие  между  человеком  и машиной на уровне деятельности.  Этот тезис повлек за собой цикл исследований, посвященных анализу специфики человеческой деятельности. Позже была показана зависимость структуры мыслительной деятельности при решении творческих задач от изменения мотивации.           

Информация о работе Искусственный интеллект, достижение и проблемы