Автор работы: Пользователь скрыл имя, 07 Февраля 2011 в 18:21, реферат
Существует принцип симметрии Кюри: если условия, одно-значно определяющие какой-либо эффект, обладают некоторой симметрией, то результат их действий не нарушит ее. Поэтому, формально, все неравновесные процессы разделяют на скаляр-ные (химические реакции), векторные (теплопроводность, диффузия) и тензорные (вязкое трение). В соответствии с принци-пом симметрии величины разных размерностей не могут быть связаны друг с другом. Так, скалярная величина не может выз-вать векторную.
Введение_________________________________________________________ 3
1. Симметрия природы____________________________________________ 4
2. Законы сохранения_____________________________________________ 7
Заключение______________________________________________________12
Литература______________________________________________________13
Можно расширить
понятие симметрии и назвать
группой симметрии такие
Законы сохранения распространяются на весь диапазон фи-зических явлений: от микро- до макротел.
Закон -- внутренняя, существенная и устойчивая связь яв-лений, обусловливающая их упорядоченное изменение.
Закономерность -- совокупность взаимосвязанных законов, обеспечивающих устойчивую тенденцию или направленность в изменениях системы.
Законы сохранения -- физические закономерности, соглас-но которым численные значения некоторых физических вели-чин не изменяются со временем.
Широко известный закон, математически выраженный Эйн-штейном формулой Е=пдс2, относится к законам сохранения. Он является фундаментальным, определяющим границы примени-мости классических представлений при описании свойств мик-ромира. Он позволил не только обосновать периодическую систему элементов, но и объяснить насыщенность электронных оболочек, свойства пара- и диамагнетиков, квантовую химию и др., построить современную теорию элементарных частиц и квантовую теорию поля. А на базе квантовой механики затем создали целый ряд современных технологий, микроэлектрони-ку, лазеры, ЭВМ, новые материалы.
В 1845 г. Л. Майер (1820 -1895) издал работу "Органическое движение в связи с обменом веществ", где последовательно и схематично изложил учение о сохранении и превращении энер-гии. Суть этого учения в следующем: в Природе есть весомая и непроницаемая материя, а остальное -- силы (энергия). Дви-жение есть сила, оно измеряется величиной "живой силы" (ки-нетической энергии). Поэтому возможны только превращения сил. Источником всех сил на Земле является Солнце. Жизнеде-ятельность живых организмов рассматривается с точки зрения превращения форм энергии. Его метод: разница удельных теплоемкостей приравнивается работе (Ср - Cv = R), где R -- соот-ношение теплоемкостей и газовой постоянной. Уравнение носит имя Майера, он же получил экспериментальным путем механи-ческий эквивалент теплоты 4,19 Дж/ккал.
Д. Джоуль и, независимо от него, X. Ленц (1804-1865) от-крыли закон -- количество теплоты, выделенной током, про-порционально квадрату силы тока и сопротивлению. Q = I2 R.
Закон сохранения и превращения энергии иногда называют первым началом термодинамики.
В большинстве химических и физических процессов изме-нение массы недоступно измерению, а всеобщий закон сохра-нения массы, применяемый от астрономии до зоологии, был установлен в разных науках по отдельности. Таким образом, в общем случае была разработана единая методика определения энергоемкости веществ на основе сгорания веществ в чистом кислороде, позволяющая без особых потерь передать теплоту воде и измерить ее.
В 1822 г. французский математик Ж. Б. Фурье (1768-1830), исследуя тепловые процессы, вывел дифференциальные урав-нения теплопроводности (закон Фурье) и разработал методы интегрирования в работе "Аналитическая теория тепла", исполь-зуя разложение функций в тригонометрический ряд -- ряд Фу-рье. Так вошли в математическую и теоретическую физику ряды Фурье и интеграл Фурье.
Русский академик Г. И. Гесс (1802 - 1850), исследуя хими-ческие реакции, в своем законе связывал сохранение и превращение вещества, включая тепловое, а следовательно, подтвер-дил законы сохранения и превращения энергии.
Вслед за Джоулем,
Томсоном (лордом У. Кельвином) (1824 - 1907)
и Г. Гельмгольцем (1821 - 1894), Р. Клаузиус
(1822 - 1888) применил закон сохранения
и превращения энер-гии к
Томсон применил этот закон к световым явлениям, химичес-ким процессам и жизнедеятельности живых организмов, а за-тем к электрическим и магнитным явлениям, установив выражение для энергии магнитного поля в виде интеграла Фу-рье, взятого по объему.
Итак, закон сохранения и превращения энергии приобрел права всеобщего закона Природы, объединяющего живую и неживую Природу в виде первого начала термодинамики -- сохраняется энергия (а не теплота).
Под законами сохранения, наряду с сохранением полной энергии, понимают сохранение импульса и момента импульса -- они определяют динамику и галактик, и элементарных частиц, а также ряд других законов сохранения, например закон сохра-нения странности и некоторых квантовых чисел.
Различают два вида энергии: потенциальную и кинетичес-кую.
Понятие потенциальной энергии тела вводится для сил, ра-бота которых определяется только положением начальной и конечной точек траектории. Такие силы называют консерватив-ными. Работа неконсервативных сил зависит от формы тра-ектории, например, силы трения.
Кинетическая энергия -- это энергия массы, движущейся под действием неконсервативных сил, а поэтому правильнее говорить о ее приращении, которое равно работе всех сил, приложенных к телу. Это могут быть силы упругости, тяготения, трения и т. д.
Связь симметрии пространства и законов сохранения была изложена немецким математиком Э. Нетер (1882-1935) в фор-ме фундаментальной теории: однородность пространства и времени влечет законы сохранения импульса и энергии, а изот-ропность пространства -- сохранения момента импульса и энер-гии.
Установление связи между свойствами пространства и вре-мени и законами сохранения выражается в вариационном прин-ципе.
Закон изменения полной энергии
Сумму кинетической
и потенциальной энергий
Закон сохранения полной энергии
Если неконсервативные силы отсутствуют или их работа рав-на нулю, то полная энергия не меняется, то есть имеет одно и то же значение в любой момент времени.
Закон сохранения полной энергии системы тел
Если в замкнутой
системе действуют силы трения, то
пол-ная энергия системы
Закон сохранения энергии в применении к тепловым процес-сам выражен в первом начале термодинамики. При этом в многоатомных молекулах кинетическая энергия складывается из трех независимых частей -- энергии движения молекулы как целого, вращательной энергии и колебательной энергии ядер.
Передача тепла возможна, кроме трения, теплопроводнос-тью, конвенцией, излучением.
С законами сохранения энергии тесно связан закон про-порциональности, или взаимосвязи массы и энергии (эта связь совершенно универсальна): изменение массы тела прямо пропорционально изменению полной энергии или приращению ки-нетической и собственной (потенциальной) энергии.
Закон сохранения импульса
Данный закон представляет собой результат симметрии от-носительно параллельного переноса исследуемого объекта в пространстве, суть -- однородность пространства. Так, в пус-том пространстве импульс сохраняется во времени, а при нали-чии взаимодействия скорость его изменения определяется суммой приложенных сил. В случае системы материальных то-чек, их полный импульс определяется как векторная сумма всех импульсов, составляющих систему материальных точек.
Системы, на которые не действуют внешние силы, называ-ют замкнутыми. Основная масса законов сформулирована имен-но для таких систем.
Закон сохранения момента импульса
Он являет собой пример симметрии относительно поворота в пространстве (изотропность пространства).
Этот закон есть следствие неизменности мира по отноше-нию к его поворотам в пространстве.
Это свойство используется, в частности, в гироскопах и дру-гих навигационных системах.
Все эти законы сохранения не только фундаментальны, но и универсальны в пределах микро-, макро- и мегамиров.
Закон сохранения заряда
Этот закон
есть следствие симметрии
Релятивистская инвариантность заряда и закон сохранения заряда изолированной системы взаимно обусловливают друг друга и принимаются в качестве исходного положения класси-ческой электродинамики.
Закон сохранения четности
Этот закон подразумевает симметрию относительно инвер-сии (зеркального отражения).
Оба закона действуют в микро- и мегамирах для элементар-ных частиц.
Закон сохранения энтропии
Этот закон
есть следствие симметрии
В настоящее время иных фундаментальных законов сохра-нения четко формулировать не представляется возможным. Однако это не означает, что число их ограниченно.
ЗАКЛЮЧЕНИЕ:
Симметрия -- это категория, обозначающая процесс суще-ствования и становления тождественных объектов, в опреде-ленных условиях и в определенных отношениях между различными и противоположными состояниями явлений мира.
Это определение накладывает методологические требования: при изучении явления, события, состояния движущейся мате-рии, прежде всего необходимо установить свойственные им различия и противоположности, затем уже раскрыть, что в нем есть тождественного и при каких условиях и в каких отношени-ях это тождественное возникает, существует и исчезает. Отсю-да общие правила формирования гипотез: если установлено существование какого-то явления, состояния или каких-то их свойств и параметров, то необходимо предполагать и существо-вание противоположных явлений, противоположных свойств и параметров; в свою очередь, необходимо далее постулировать, что между противоположными условиями в каких-то отноше-ниях и условиях возникают и существуют тождественные мо-менты. В этих двух правилах выражается применение понятия симметрии в конкретных исследованиях.
Асимметрия -- категория, обозначающая существование и становление в определенных условиях и отношениях различий и противоположностей внутри единства, тождества, цельности явлений мира.
Симметрия и асимметрия дополняют друг друга, и искать их нужно одновременно.
История науки показывает, что симметрия позволяет объяс-нить многие явления и предсказать существование новых свойств Природы.
В естествознании
преобладают определения
Свойства симметрии пространства и времени связывают и определяют и законы сохранения: с однородностью времени связан закон сохранения энергии; с однородностью простран-ства -- сохранения импульса, с изотропией -- сохранения мо-мента импульса.
ЛИТЕРАТУРА:
Вейль Г. Симметрия. -- М.: Наука, 1975.
Горохов В. Г. Концепции современного естествознания. -М: Инфра-М, 2000.
Горелов А. А. Концепции современного естествознания. -М.: Центр, 1997.
ДруяновЛ. А. Законы природы и их назначение. -- М.: Про-свещение, 1982.
Дубнищева Т. Я. Концепции современного естествознания. -- Новосибирск: ЮКЭА, 1997.
Карпенко С. X. Основные концепции естествознания. -- М.: Культура и спорт, 1998.
Князева Е. Н., Курдюмов С. П. Законы эволюции и самоор-ганизации сложных систем. -- М.: Наука, 1994.
КомпанеецА. С. Симметрия в микро- и макромире. -- М.: Наука, 1978.