Автор работы: Пользователь скрыл имя, 20 Января 2011 в 00:28, шпаргалка
Работа содержит ответы на вопросы по дисциплине "Концепции современного естествознания".
26(мегамир и его св-ва.Космология) Мегамир — это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и миллиардами лет. Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.
Все существующие галактики входят в систему самого высокого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15— 20 млрд. световых лет. Понятия «Вселенная» и «Метагалактика» — очень близкие понятия:
они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» — тот же мир, но с точки зрения его структуры — как упорядоченную систему галактик. Космоло?гия (космос + -логия) — раздел астрономии и физики, изучающий свойства и эволюцию Вселенной в целом. Основу этой дисциплины составляет математика, физика и астрономия. В своих задачах она часто пересекается с философией и богословием. Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира.
В китайской космологии
считалось, что Земля — своего рода
чаша, прикрытая небом, состоящая из полусфер,
вращающихся на очень низком расстоянии
от Земли.
27(хим элемент и хим соединение. Периодический закон Менделеева)
Хими?ческий элеме?нт — множество атомов с одинаковым зарядом ядра, числом протонов, совпадающим с порядковым или атомным номером в таблице Менделеева[1]. Каждый химический элемент имеет свои название и символ, которые приводятся в Периодической системе элементов Дмитрия Ивановича Менделеева. вещество,
состоящее из химически связанных атомов двух или нескольких элементов. Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной связью (например, азот , кислород и др.). Состав химического соединения записывается в виде химических формул, а строение часто изображается структурными формулами.
В подавляющем большинстве случаев химические соединения подчиняется закону постоянства состава и закону кратных отношений. Однако известны довольно многочисленные соединения переменного состава. Химические соединения получают в результате химических реакций. Образование химических соединений сопровождается выделением (экзотермическая реакция) или поглощением (Эндотермическая реакция) энергии. Физические и химические свойства химических соединений отличаются от свойств веществ, из которых они получены. Химические соединения разделяются на неорганические и органические. Известно более 100 тыс. неорганических и более 3 млн органических соединений.
Периодический закон Д. И. Менделеева — фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от
увеличения зарядов
ядер их атомов. Открыт Д. И. Менделеевым
в марте 1869 года при сопоставлении свойств
всех известных в то время элементов и
величин их атомных масс (весов). Термин
«периодический закон» Менделеев впервые
употребил в ноябре 1870, а в октябре 1871 дал
окончательную формулировку Периодического
закона: «свойства простых тел, а также
формы и свойства соединений элементов,
а потому и свойства образуемых ими простых
и сложных тел, стоят в периодической зависимости
от их атомного веса».[1] Графическим (табличным)
выражением периодического закона является
разработанная Менделеевым периодическая
система элементов.
28(химические процессы. Энергетика хим процессов) Хими?ческая реа?кция — превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). Химические реакции происходят при смешении или физическом контакте реагентов самопроизвольно, при нагревании, участии катализаторов (катализ), действии света (фотохимические реакции),
электрического тока (электродные процессы), ионизирующих излучений (радиационно-химические реакции), механического воздействия (механохимические реакции), в низкотемпературной плазме (плазмохимические реакции) и т. п. Самопроизвольное превращение веществ осуществляется при условии, что они обладают энергией, достаточной для преодоления потенциального барьера, разделяющего исходное и конечное состояния системы (Энергия активации).
Химическая термодинамика – это раздел физической химии, которая изучает превращения различных видов энергии при химических реакциях, процессах растворения, кристаллизации. Химическая термодинамика исследует возможности и границы самопроизвольного протекания физических процессов. Объектом изучения в термодинамике является термодинамическая система, под которой понимают условно выделенную из пространства совокупность тел, между которыми возможен масса- и теплообмен. Системы, которые могут обмениваться с окружающей средой и энергией и веществом называются открытыми. Системы, которые обмениваются только энергией, называются закрытыми. Если между средой и системой отсутствует и тепло- и массообмен – это изолированная система. Различают также
гомогенные системы,
состоящие из одной фазы и гетерогенные,
состоящие из нескольких фаз. Реакции,
которые протекают на границе раздела
фаз – гетерогенные. Состояние системы
называется равновесным, если параметры
системы во времени самопроизвольно не
изменяются. Неравновесная система –
параметры во времени изменяются.
29(реакционная способность веществ) Реакционная способность, характеристика химической активности веществ, учитывающая как разнообразие реакций, возможных для данного вещества, так и их скорость. Например, благородные металлы (Au, Pt) и инертные газы (Не, Ar, Kr, Xe) химически инертны, т. е. у них низкая Р. с.; щелочные металлы (Li, Na, К, Cs) и галогены (F, Cl, Вг, I) химически активны, т. е. обладают высокой Р. с. В органической химии насыщенные углеводороды характеризуются низкой Р. С, для них возможны немногочисленные реакции (радикальное галогенирование и нитрование, дегидрирование, деструкция с разрывом С—С-связей и некоторые др.), происходящие в жёстких условиях (высокая температура, ультрафиолетовое облучение). Наличие в молекуле двойных и тройных связей, функциональных групп (гидроксильной —ОН, карбоксильной —СООН, аминогруппы —NH2 и др.) приводит к дальнейшему увеличению Р. с. Количественно Р. с. выражают константами скоростей реакций или константами равновесия в случае обратимых процессов
Современные представления о Р. с. основаны на электронной теории валентности и на рассмотрении распределения (и смещения под действием реагента) электронной плотности в молекуле.
Электронные
смещения качественно
Все эти факторы оказывают на скорость реакций различное, а иногда противоположное влияние в зависимости от механизма данной реакции. Количественная связь между константами скорости (или равновесия) в пределах одной реакционной серии может быть представлена корреляционными уравнениями, описывающими изменения констант в зависимости от изменения какого-либо параметра (например, эффекта заместителя — уравнение Гаммета — Тафта, полярности растворителя — уравнение Брёнстеда и т.п.).
На скорость некоторых
химических реакций можно влиять
присутствием небольшого количества определенных
веществ, которые сами в реакции
участия не принимают. Вещества эти
называются катализаторами. Катализаторы
бывают положительными, ускоряющими реакцию,
и отрицательными — замедляющими ее. Каталитическое
ускорение химической реакции называется
катализом и является приемом современной
химической технологии (производство
полимерных материалов, синтетического
топлива и др.). Считается, что удельный
вес каталитических процессов в химической
промышленности достигает 80%. Благодаря
катализу существенно повысилась эффективность
экономики химической промышленности,
поскольку ускорение химических реакций
заметно влияет на снижение издержек производства.
30(химические системы) Можно сказать что до открытия в 1869 г. периодической системы химических элементов Дмитрием Ивановичем Менделеевым (1834—1907) не существовало той объединяющей системы, с помощью которой можно было бы объяснить весь накопленный фактический материал, а следовательно, представить все наличное знание как систему теоретической химии.
Характер любой химической системы, как известно, зависит не только от состава и строения ее элементов, но и от их взаимодействия. Именно такое взаимодействие определяет специфические, целостные свойства самой системы. Поэтому при исследовании разнообразных веществ и их реакционной способности ученым приходилось заниматься и изучением их структур. Соответственно уровню достигнутых знаний менялись и представления о химической структуре веществ. Хотя разные ученые по-разному истолковывали характер взаимодействия между элементами химических систем, тем не менее все они подчеркивали, что целостные свойства этих систем определяются именно специфическими особенностями взаимодействия между их элементами.
В качестве первичной химической системы рассматривалась при этом молекула, и поэтому, когда речь заходила о структуре веществ, то имелась в виду именно структура молекулы как наименьшей единицы вещества.
Попытку раскрытия
структуры молекул и
Важной компонентой,
характеризующей химические процессы,
является их энергетика, представляющая
собой потенциал взаимодействия
элементов химической системы.
31(теории возникновения жизни) Эволюция жизни предполагает ее истоки, начало. Проблема происхождения жизни является одной из важнейших не только в биологии, но и во всем естествознании и имеет большое мировоззренческое значение.
креационизм — основана на вере и поэтому не относится к области науки.
самопроизвольного зарождения жизни из неживого вещества появилась в древности; ее придерживался еще Аристотель.
принцип Реди, или концепция биогенеза). Живое из живого
пастеризация
Концепция стационарного состояния предполагает, что Земля и жизнь на ней существовали всегда, причем в неизменном виде.
Концепция панспермии связывает появление жизни на Земле с ее занесением из космического пространства.
концепцию биохимической эволюции. Согласно современному варианту концепции, жизнь зародилась на Земле естественным путем в результате химических, а затем — биохимических процессов.
Теория абиогенного происхождения жизни
все начиналось с белков, и на возможности в определенных условиях спонтанного химического синтеза мономеров белков - аминокислот и белковоподобных полимеров (полипептидов) абиогенным путем. Основным ее постулатом было то, что спонтанно возникавшие в первичном «бульоне» белковоподобные соединения объединялись в коацерватные капли - обособленные коллоидные системы плавающие в более разбавленном водном растворе. Это давало главную предпосылку возникновения организмов - обособление некой биохимической системы от окружающей среды, ее компартментализацию. Так как некоторые белковоподобные соединения коацерватных капель могли обладать каталитической активностью, то появлялась возможность прохождения биохимических реакций синтеза внутри капель - возникало подобие ассимиляции, а значит, роста коацервата с последующим его распадом на части - размножением. Ассимилирующий, растущий и размножающийся делением коацерват рассматривался как прообраз живой клетки.
Теория эволюции
До настоящего
времени в научной и
Теория эволюции, которую часто называют Дарвиновской теорией или дарвинизмом, возникла не на пустом месте. Ко времени Дарвина общепризнанной стала космологическая теория Эммануила Канта, с его бесконечной в пространстве и во времени Вселенной, подчинённой законам механики, описанным Исааком Ньютоном. Таким образом был создан фундамент теории эволюции, на котором Чарльз Дарвин создал стройное здание своей теории публикацией книг: "Происхождение видов", "Изменение домашних животных и культурных растений", "Происхождение человека и половой отбор" и других.
Информация о работе Шпаргалка по "Концепции современного естествознания"