Автор работы: Пользователь скрыл имя, 03 Апреля 2011 в 12:59, реферат
Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные, иногда даже незаменимые материалы. Отдельные материалы обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью и т. п. Особо следует отметить технологичность неметаллических материалов.
Общие сведения о неметаллических материалах……………………....3
Особенности свойств полимерных материалов………………………..3
Пластические массы……………………………………………………..6
Резиновые материалы……………………………………………………8
Общие сведения, состав и классификация резин……………………...8
Резины общего назначения……………………………………………...9
Физико-механические свойства резин и их применение…………….10
Клеящие материалы…………………………………………………….14
Общие сведения, состав и классификация клеев……………………..14
Конструкционные смоляные и резиновые клеи………………………16
Свойства клеевых соединений…………………………………………18
Лакокрасочные материалы……………………………………………..19
Сравнительные свойства лакокрасочных покрытий…………………22
Список литературы…………………………………………………….23
Резины общего
назначения могут работать в среде
воды, воздуха, слабых растворов кислот
и щелочей. Интервал рабочих температур
составляет от — 35 --- -50 до 80-130°С. Из этих
резин изготовляют шины, ремни, рукава,
транспортерные ленты, изоляцию кабелей,
различные резинотехнические
4. Физико-механические свойства резин и их применение
При растяжении резины происходит разрыв цепей вулканизационной сетки, при этом более слабые и легко перегруппировывающиеся связи способствуют релаксации перенапряжений и облегчают ориентацию главных цепей. Более прочные связи сохраняют целостность сетки при больших деформациях.
Для каучуков и резины характерны большие деформации при сравнительно низких напряжениях. Напряжения зависят от времени действия силы и от скорости деформирования, т. е. являются релаксационными. Механические свойства зависят от соотношения энергии межмолекулярного взаимодействия и энергии теплового движения звеньев. "Релаксация убыстряется при нагревании (энергичнее тепловое движение), поэтому для резин характерна резко выраженная зависимость механических свойств от температуры. Напряжение в процессе релаксации достигает равновесного значения. В связи с этим механическое поведение резины определяется ее упругими (высокоэластическими) свойствами при равновесии и релаксационными свойствами. Большое влияние на долговечность материала оказывает старение.
Резинам присущи
очень высокие обратимые
Восстановление представляет собой изменение величины деформации во времени после снятия нагрузки с образца; внутренние силы в резине приходят в равновесие медленно, поэтому упругое последствие в статических условиях проявляется длительно. В резине наблюдается остаточная деформация. Восстанавливаемость резины характеризует ее эксплуатационные качества.
Прочность резины
зависит от регулярности строения полимера
и энергии взаимодействия между
звеньями его молекул. Переход в
кристаллическое состояние
По гистерезисной диаграмме вычисляется полезная упругость резины как отношение работы, возвращенной деформированным образцом, к общей работе, затраченной на эту деформацию (рис. 4).
Рис.4. Диаграмма напряжение — удлинение резины, получаемая в цикле растяжение — восстановление с заданной скоростью деформации:
АБВЕА — работа растяжения;
АБВГДА — работа необратимо рассеянная;
ДГВЕД--- возвращенная работа
В условиях динамического нагружения (переменные циклические нагрузки) свойства резины определяются упругогистерезисными и усталостно-прочностными характеристиками. Эти свойства необходимо учитывать при применении резины в шинах, муфтах, рессорах, амортизаторах и т.. п., где они являются решающими для хорошей работоспособности, надежности, долговечности. Резины из НК (по сравнению с СКВ) отличаются малым внутренним трением, которое определяет весьма благоприятные гистерезисные свойства.
Усталостно-прочностные
свойства резин определяются их утомлением,
когда под действием
Воздействие на резину отрицательных температур вызывает снижение и даже полную утрату высокоэластических свойств, переход в стеклообразное состояние и возрастание ее жесткости в тысячи и десятки тысяч раз.
Старение резины
наблюдается при хранении и эксплуатации
резиновых изделий под
Физико-механические свойства каучуков и резин даны в табл. 3.
Таблица 3
Физико-механические свойства каучуков и саженаполненных резин
|
Применяемые в
машиностроении резиновые детали подразделяют
по назначению на следующие группы:
уплотнительные; вибро- и звукоизолирующие
и противоударные; силовые (шестерни,
корпуса насосов, муфты, шарниры); опоры
скольжения (резинометаллические
Представителями резинотканевых изделий являются напорные рукава для топлива, масла, воды, растворов кислот и щелочей и газов; рукава могут быть гибкими трубопроводами воздушных тормозов. Для увеличения прочности и устойчивости смятию рукава армируют металлической проволокой. Резинотканевые приводные ремни бывают плоскими и клиновыми, последние изготовляют с кордшнуром или кордтканью в несущем слое ремня. Транспортерные ленты применяют для перемещения грузов по горизонтали или под небольшим уклоном. Шины бывают пневматическими, в которых амортизационная способность обеспечивается сжатым воздухом и частично эластическими свойствами шинных материалов, и массивными или цельнорезиновыми, в которых используется только эластичность самого резинового материала.
Клеящие материалы
1. Общие сведения, состав и классификация клеев
Клеями обычно
называют коллоидные растворы пленкообразующих
полимеров, способные при затвердевании
образовывать прочные пленки, хорошо
прилипающие к различным
Клеевые соединения по сравнению с другими видами неразъемных соединений (заклепочными, сварными и др.) имеют ряд преимуществ: возможность соединения различных материалов (металлов и сплавов, пластмасс, стекол, керамики и др.) как между собой, так и в различных сочетаниях; атмосферостойкость и стойкость к коррозии клеевого шва; герметичность соединения; возможность соединения тонких материалов; снижение стоимости производства; экономия массы и значительное упрощение технологии изготовления изделий.
Недостатками
клеевых соединений являются относительно
низкая длительная теплостойкость (до
350°С), обусловленная органической природой
пленкообразующего; невысокая прочность
склейки при неравномерном
Прочность склеивания
зависит от явления адгезии, когезии
и механического сцепления
Для объяснения
физико-химической сущности адгезионных
явлений предложены следующие теории:
адсорбционная, электрическая и
диффузионная. Адсорбционная теория
рассматривает адгезию как
В основе электрической теории (работы Б. В. Дерягина и Н. А. Кротовой) лежат электрические силы. Адгезия - результат действия электростатических и ван-дер-ваальсовых сил. Электростатические силы определяются двойным электрическим слоем, всегда возникающим при контакте разнородных тел.
Диффузионная теория, развиваемая С. С. Воюцким, предполагает, что при образовании связи между неполярными полимерами электрический механизм адгезии невозможен, и адгезия обусловливается переплетением макромолекул поверхностных слоев в результате их взаимодиффузии.
Когезия представляет
собой собственную прочность
пленки. Работа когезии - это работа,
затрачиваемая на преодоление сил
сцепления между частицами
На процесс склеивания влияет природа склеиваемых материалов. Так, полярные материалы требуют применения полярных клеев. Адгезионные свойства металлов различны. По мере убывания этих свойств металлы можно расположить в следующем порядке: сталь, бронза, алюминиевые сплавы, медь, железо, латунь. При склеивании пластиков лучшим клеем является раствор или расплав этого же пластика. Если пластики неполярны и не растворяются в растворителях (полиэтилен, фторопласт-4, полипропилен), то характер их поверхности изменяют механическим или химическим путем.
В состав клеящих материалов входят следующие компоненты: пленкообразующее вещество — основа клея, которое определяет адгезионные, когезионные свойства клея и основные физико-механические характеристики клеевого соединения; растворители, создающие определенную вязкость клея; пластификаторы для устранения усадочных явлений в пленке и повышения ее эластичности; отвердители и катализаторы для перевода пленкообразующего вещества в термостабильное состояние; наполнители для уменьшения усадки клеевой пленки, повышения прочности склеивания и, следовательно, возможности менее точной подгонки поверхности и экономии клеящих материалов.
Информация о работе Неметаллические детали, в машиностроении и их свойства