Автор работы: Пользователь скрыл имя, 05 Ноября 2011 в 18:24, реферат
Одна красивая, но, вероятно, неправдоподобная легенда из гласит, что однажды к римскому императору Тиберию (42 год до н. э. — 37 год н. э.) пришёл ювелир с металлической, небьющейся обеденной тарелкой, изготовленной, якобы из глинозёма — Al2O3. Тарелка была очень светлой и блестела, как серебро. По всем признакам она должна быть алюминиевой. При этом ювелир утверждал, что только он и боги знают, как получить этот металл из глины.
В первичном алюминии, используемом для производства сплавов системы Al—Mg, содержание натрия не должно превышать 0,001 %. Это связано с тем, что присутствие натрия в этих сплавах ухудшает механические и другие эксплуатационные свойства изделий, применяемых в ряде отраслей народного хозяйства. Наиболее эффективным методом одновременного рафинирования алюминия от натрия, водорода и неметаллических примесей является продувка расплавленного металла газовой смесью азота с 2-10% хлора, вводимой в расплав в виде мелких пузырей с помощью специальных устройств. Этот способ рафинирования позволяет снизить содержание натрия в алюминии до 0,0003—0,001% при расходе газовой смеси от 0,8 до 1,5 м3/т металла.
Расход электроэнергии
на производство 1 т товарного алюминия
из металла-сырца при
Получение алюминия высокой чистоты
Для получения алюминия высокой чистоты (марок А995—А95) первичный алюминий технической чистоты электролитически рафинируют. Это позволяет снизить в алюминии содержание металлических и газообразных примесей и тем самым значительно повысить его электропроводность, пластичность, отражательную способность и коррозионную стойкость.
Электролитическое рафинирование алюминия осуществляют электролизом расплавленных солей по трехслойному способу. Сущность способа заключается в следующем. В рафинировочном электролизере имеются три расплавленных слоя. Нижний, наиболее тяжелый, лежит на токопроводящей подине и служит анодом; он называется анодным сплавом и представляет собой сплав рафинируемого алюминия с медью, которую вводят для утяжеления слоя. Средний слой — расплавленный электролит; его плотность меньше плотности анодного сплава и выше плотности чистого рафинированного (катодного) алюминия, находящегося над электролитом (верхний, третий жидкий слой).
При анодном растворении все примеси более электроположительные, чем алюминий (Fe, Si, Ti, Cu и др.), остаются в анодном сплаве, не переходя в электролит. Анодно растворяться будет только алюминий, который в форме ионов Al3+ переходит в электролит: Al – 3e > Al3+. При электролизе ионы алюминия переносятся к катоду, на котором и разряжаются: Al3+ + 3e > Al. В результате на катоде накапливается слой расплавленного рафинированного алюминия. Если в анодном сплаве присутствуют примеси более электроотрицательные, чем алюминий (например, Ba, Na, Mg, Ca), то они могут электрохимически растворяться на аноде вместе с алюминием и в виде ионов переходить в электролит. Поскольку содержание электроотрицательных примесей в алюминии-сырце невелико, в заметном количестве в электролите они не накапливаются. Разряда этих ионов на катоде практически не происходит, так как их электродный потенциал электроотрицательнее алюминия.
В качестве электролита при электролитическом рафинировании алюминия в Советском Союзе и в большинстве стран применяют фторидно-хлоридный электролит, состав которого 55-60% BaCl2, 35-40% AlF4+NaF и 0-4% NaCl. Молярное отношение NaF : AlF3 поддерживают 1,5-2,0; температура плавления электролита 720-730°C; температура процесса электролиза около 800°C; плотность электролита 2,7 г/см3.
Анодный сплав готовят из первичного алюминия и чистой меди (99,90-99,95% Cu), которую вводят в металл в количестве 30-40%. Плотность жидкого анодного сплава такого состава 3-3,5 г/см3; плотность же чистого расплавленного катодного алюминия равна 2,3 г/см3. При таком соотношении плотностей создаются условия, необходимые для хорошего разделения трех расплавленных слоев. В четверной системе Al—Cu—Fe—Si, к которой относится анодный сплав, образуется эвтектика с температурой плавления 520°C. Охлаждая анодный сплав, содержащий примеси железа и кремния в количествах выше эвтектических концентраций, можно выделить железо и кремний в твердую фазу в виде интерметаллических соединений FeSiAl5 и Cu2FeAl7. Так как температура анодного сплава в карманах электролизера на 30-40°C ниже температуры анодного сплава в рабочем пространстве ванны, в них (по мере накопления в анодном сплаве железа и кремния) будут выделяться твердые интерметаллические осадки. Периодически удаляя эти осадки, очищают анодный сплав (без его обновления) от примесей железа и кремния. Так как в анодном сплаве концентрируется галлий, то извлекаемые из электролизера осадки (30-40 кг на 1 т алюминия) могут служить источником получения этого металла.
Для электролитического
рафинирования служат электролизеры,
которые по конструкции напоминают
электролизеры с обожженными
анодами для электро
Электрохимический выход по току, рассчитанный по вылитому из электролизера металлу, составляет 97-98%. Фактический же выход по току, рассчитанный по количеству товарного металла, составляет 92-96%. Основным фактором, снижающим выход по току, помимо прямых потерь тока на разряд более электроотрицательных ионов, потерь металла за счет его окисления и механических потерь алюминия, является работа электролизеров с выпуском несортового металла, который вновь возвращается в анодный сплав для последующего рафинирования. Эти периоды работы электролизеров имеют место при пуске электролизеров и нарушениях технологического режима. Электролитическое рафинирование алюминия является очень энергоемким производством. Расход электроэнергии в переменном токе, включая энергию, затраченную на подготовку электролита и анодного сплава, работу вентиляционных устройств и транспортных средств, а также потери на преобразование переменного тока в постоянный, составляет 18,5-21,0 тыс. кВт/ч на 1 т алюминия. Энергетический к. п. д. рафинировочных электролизеров не превышает 5-7%, т. е. 93-95% энергии расходуется в виде потерь тепла, выделяемого в основном в слое электролита (примерно 80-85% от общего прихода тепла). Следовательно , основными путями дальнейшего снижения удельного расхода электроэнергии на электролитическое рафинирование алюминия являются совершенствование теплоизоляции электролизера (особенно верхней части конструкции) и снижение слоя электролита (уменьшение междуэлектродного расстояния). Чистота алюминия, рафинированного по трехслойному методу, 99,995%; она определяется по разности с пятью основными примесями — железом, кремнием, медью, цинком и титаном. Количество получаемого металла такой марки может составлять 45-48% от общего выпуска (без его расшихтовки с более низкими, сортами).
Следует, однако, отметить, что в электролитически рафинированном алюминии содержатся в меньших количествах примеси других металлов, что снижает абсолютную чистоту такого алюминия. Радиоактивационный анализ позволяет обнаружить в электролитически рафинированном алюминии до 30 примесей, суммарное содержание которых примерно 60 - 10–4%. Следовательно, чистота рафинированного алюминия по разности с этими примесями составляет 99,994% . Один из источников загрязнения катодного алюминия — графитовые токоотводы, содержащие окись железа и кремния и постоянно соприкасающиеся с рафинированным алюминием. Если ток к катодному алюминию подводить непосредственно алюминиевыми шинами и применять инструмент из очень чистого графита, можно получать металл чистотой 99,999% по разности с определяемыми примесями (Fe, Si, Cu, Zn и Ti). B таком металле содержится в среднем, %: Si 0,0002; Fe 0,00032; Cu 0,0002; Zn 0,0002 и Ti 0,00005. Однако из-за технических трудностей такой способ подвода тока пока не нашел широкого промышленного применения.
Получение алюминия особой чистоты
Алюминий особой чистоты (марки A999) может быть получен тремя способами: зонной плавкой, дистилляцией через субгалогениды и электролизом алюминийорганических соединений. Из перечисленных способов получения алюминия особой чистоты практическое применение в СССР получил способ зонной плавки.
Принцип зонной
плавки заключается в многократном
прохождении расплавленной зоны
вдоль слитка алюминия. По величине
коэффициентов распределения К=
Алюминий, предназначенный для зонной плавки, подвергают некоторой подготовке, которая заключается в фильтрации, дегазации и травлении. Фильтрация необходима для удаления из алюминия тугоплавкой и прочной окисной пленки, диспергированной в металле. Окись алюминия, присутствующая в расплавленном алюминии, может при его затвердевании создавать центры кристаллизации, что ведет к получению поликристаллического слитка и нарушению эффекта перераспределения примесей между твердым металлом и расплавленной зоной. Фильтрацию алюминия ведут в вакууме (остаточное давление 0,1-0,4 Па) через отверстие в дне графитового тигля диаметром 1,5-2 мм. Предварительную дегазацию алюминия перед зонной плавкой (также нагреванием в вакууме) проводят для предупреждения разбрызгивания металла при расплавлении зоны в случае проведения процесса в глубоком вакууме. Последняя стадия подготовки алюминия к зонной плавке — травление его поверхности смесью концентрированных соляной и азотной кислот.
Так как алюминий обладает значительной химической активностью и в качестве основного материала для контейнеров (лодочек) применяют особо чистый графит, то зонную плавку алюминия проводят в вакууме или в атмосфере инертного газа (аргон, гелий).
Зонной плавкой в вакууме обеспечивается большая чистота алюминия вследствие улетучивания части примесей при вакуумировании (магния, цинка, кадмия, щелочных и щелочноземельных металлов), а также исключается загрязнение очищенного металла примесями в результате применения защитных инертных газов. Зонную плавку алюминия в вакууме можно проводить при непрерывной откачке кварцевой трубы, куда помещают графитовую лодочку со слитком алюминия, а также в запаянных кварцевых ампулах, из которых предварительно откачивают воздух до остаточного давления примерно 1 -10–3 Па.
Для создания расплавленной зоны на слитке алюминия при его зонной плавке может быть применен нагрев с помощью небольших печей сопротивления или же токов высокой частоты. Для электропитания печей электросопротивления не требуется сложной аппаратуры, печи просты в эксплуатации. Единственный недостаток этого метода нагрева — небольшое сечение слитка очищаемого алюминия.
Индукционный нагрев токами высокой частоты — идеальный способ создания расплавленной зоны на слитке при зонной плавке. Метод высокочастотного нагрева (помимо того, что он позволяет осуществить зонную плавку слитков больших сечений) имеет важное преимущество, заключающееся в том, что расплавленный металл непрерывно перемешивается в зоне; это облегчает диффузию атомов примеси от фронта кристаллизации в глубь расплава. Впервые промышленное производство алюминия высокой чистоты зонной плавкой было освоено на Волховском алюминиевом заводе в 1965 г. на установке УЗПИ-3, разработанной ВАМИ. Эта установка была оснащена четырьмя кварцевыми ретортами с индукционным нагревом, при этом индукторы были подвижными, а контейнеры с металлом неподвижными. Производительность ее составляла 20 кг металла за цикл очистки. Впоследствии была создана и введена в промышленную эксплуатацию в 1972 г. на Волховском алюминиевом заводе более высокопроизводительная цельнометаллическая установка УЗПИ-4. Эффективность очистки алюминия при зонной плавке может быть охарактеризована следующими данными. Если суммарное содержание примесей в электролитически рафинированном алюминии составляет (30?60) 10–4%, то после зонной плавки оно снижается до (2,8?3,2) 10–4%, т. е. в 15-20 раз. Это отвечает остаточному электросопротивлению алюминия 0 (при температуре жидкого гелия 4,2 К) соответств енно (20;40) 10–10 и (1,8;2,1) 10–10 или чистоте 99,997—99,994 и 99,9997%.Эти данные свидетел ьствуют о сильном снижении содержания большинства примесей, хотя такие примеси, как марганец и скандий, при зонной плавке практически не удаляются.
В последние годы в ВАМИ разработана и опробована в промышленных условиях технология получения алюминия чистотой 99,9999% методом каскадной зонной плавки. Сущность способа каскадной зонной плавки заключается в том, что очистку исходного алюминия чистотой А999 ведут, последовательно повторяя циклы (каскады) зонной планки. При этом исходным материалом каждого последующего каскада служит средняя, наиболее чистая часть слитка, получаемого в результате предыдущего цикла очистки.
Для получения металла чистотой 99,9999% достаточно провести два каскада зонной плавки. Дальнейшее увеличение числа каскадов не повышает чистоту алюминия, хотя и увеличивает общий выход металла чистотой 99,9999%.
Другим возможным
процессом для получения
Давление насыщенных паров металлического алюминия недостаточно высоко, чтобы осуществить его непосредственную дистилляцию с практически приемлемыми скоростями. Однако при нагревании в вакууме (при 1000-1050°С) с AlF3 алюминий образует легколетучий субфторид AlF, который перегоняется в холодную зону (800°С), где вновь распадается (диспропорционирует) с выделением чистого алюминия.
Возможность глубокой очистки алюминия от примеси в основном обусловлена тем, что вероятность образования субсоединений алюминия значительно больше вероятности образования субсоединений примеси.
Содержание примесей, в алюминии, дистиллированном через субфторид, находится в обратной зависимости от массы получаемых слитков. В слитках массой 1,5-1,7 кг суммарное содержание примесей (Si, Fe, Cu, Mg) составляет 11 ;10–4 %, а содержание газов 0,007 см3/100 г. Удельное остаточное сопротивление (0 ) при температуре жидкого гелия для такого металла составляет (1,7;2,0) ; 10–10 Ом /см. Дистилляция алюминия через субфторид имеет ряд недостатков (сравнительно небольшая производительность, недостаточно глубокая очистка от магния и др.), поэтому способ не получил промышленного развития. Разработаны также способы получения алюминия особой чистоты электролизом комплексных алюминийорганических соединений, отличающиеся составом электролита. Например, в ФРГ применяют способ электролиза 50%-ного раствора NaF -2Al (C2H5)3 в толуоле. Рафинирование проводят при 100°С, напряжении на электролизере 1,0-1,5 В и плотности тока 0,3-0,5 А/дм2 с использованием алюминиевых электродов. Катодный выход по току 99%. Электрохимическим рафинированием в алюминийорганических электролитах существенно снижается содержание марганца и скандия, которые практически не удаляются при зонной очистке. Недостатками указанного способа являются его низкая производительность и высокая пожароопасность. Для более глубокой очистки алюминия и получения металла чистотой 99,99999% и более можно использовать комбинирование указанных выше способов: электролиз алюминийорганических соединений или возгонку через субфторид с последующей зонной плавкой полученного алюминия. Например, многократной зонной очисткой алюминия, полученного электролизом алюминийорганических соединений, удается получить металл особой чистоты с содержанием примесей, 10–9 %: Fe 50; Si <500; Cu 10; Mg 30; Mn 5; Ti <500; Cr 20; Zn <50; Co <1; Ag <5; Sb <1 и Se 3.