Рефрактометрический метод анализа в химии

Автор работы: Пользователь скрыл имя, 19 Октября 2012 в 20:10, курсовая работа

Краткое описание

Рефрактометрический метод имеет многолетнюю историю применения в химии.
Рефрактометрия (от латинского refraktus – преломлённый и греческого metréō – мерю, измеряю) – это раздел прикладной оптики, в котором рассматриваются методы измерения показателя преломления света (n) при переходе из одной фазы в другую, или, иными словами, показатель преломления n – это отношение скоростей света в граничащих средах.

Содержание работы

Введение…………………………………………………………………………...3
1 Некоторые понятия физической оптики………………………………………5
1.1 Распространение света…………………………………………….………….5
1.1.2 Показатель преломления света (показатель рефракции)…………….…...7
1.1.3 Дисперсия света……………………………………………………………10
1.1.4 Полное внутреннее отражение……………………………………………13
1.2 Дипольные моменты и рефракция………………………………………….14
1.2.1 Поляризуемость и дипольный момент…………………………………...15
1.2.2 Молярная поляризуемость………………………………………………...17
1.2.3 Молярная рефракция………………………………………………………20
2 Экспертная часть………………………………………………………………23
2.1 Аппаратура, материалы, реактивы…………………………………….……23
2.2 Подготовка к испытанию……………………………………………………23
2.3 Проведение испытания……………………………………………………...24
2.4 Обработка результатов испытания…………………………………………25
3


Заключение
Список используемой литературы

Содержимое работы - 1 файл

курсач.doc

— 276.50 Кб (Скачать файл)

Содержание

Введение…………………………………………………………………………...3

1 Некоторые понятия физической оптики………………………………………5

1.1 Распространение света…………………………………………….………….5

1.1.2 Показатель преломления света (показатель рефракции)…………….…...7

1.1.3 Дисперсия света……………………………………………………………10

1.1.4 Полное внутреннее отражение……………………………………………13

1.2 Дипольные моменты и рефракция………………………………………….14

1.2.1 Поляризуемость и дипольный момент…………………………………...15

1.2.2 Молярная поляризуемость………………………………………………...17

1.2.3 Молярная рефракция………………………………………………………20

2 Экспертная часть………………………………………………………………23

2.1 Аппаратура, материалы,  реактивы…………………………………….……23

2.2 Подготовка к испытанию……………………………………………………23

2.3 Проведение испытания……………………………………………………...24

2.4 Обработка результатов  испытания…………………………………………25

3

 

 

Заключение

Список используемой литературы

 

 

Введение

 

Рефрактометрический метод  имеет многолетнюю историю применения в химии.

Рефрактометрия (от латинского refraktus – преломлённый и греческого metréō – мерю, измеряю) – это раздел прикладной оптики, в котором рассматриваются методы измерения показателя преломления света (n) при переходе из одной фазы в другую, или, иными словами, показатель преломления n – это отношение скоростей света в граничащих средах.

Применительно к химии  рефракция имеет более широкое смысловое значение. Рефракция R (от латинского refractio – преломление) есть мера электронной поляризуемости атомов, молекул, ионов.

Поляризация электронных  облаков в молекулах отчётливо  проявляется в инфракрасном (ИК) и ультрафиолетовом (УФ) поглощении веществ, но в ещё большей степени она ответственна за явление, которое количественно характеризуется молекулярной рефракцией.

Когда свет как электромагнитное излучение проходит через вещество, то даже в отсутствие прямого поглощения он может взаимодействовать с электронными облаками молекул или ионов, вызывая их поляризацию. Взаимодействие электромагнитных полей светового пучка и электронного поля атома приводит к изменению поляризации молекулы и скорости светового потока. По мере возрастания поляризуемости среды возрастает и n – показатель, величина которого связана с молекулярной рефракцией. Указанное явление используется наряду с методом дипольных моментов для изучения структуры и свойств неорганических, органических и элементоорганических соединений.

Рефрактометрия широко применяется также для определения  строения координационных соединений (комплексов молекулярного и хелатного  типа), изучения водородной связи, идентификации химических соединений, количественного и структурного анализа, определения физико–химических параметров веществ.

В производственной практике показатель преломления света n используется для контроля степени чистоты и качества веществ; в аналитических целях – для идентификации химических соединений и их количественного определения. Таким образом, рефрактометрия – это метод исследования веществ, основанный на определении показателя преломления (коэффициента рефракции) и некоторых его функций. Из функций n, используемых в химии, наибольшее значение имеют: функция Лоренца – Ленца, производная n по концентрации растворённых веществ (инкремент n) и дисперсионные формулы, включающие разности показателей преломления для двух длин волн. Инкременты n используют в жидкостной хроматографии и при определении молекулярной массы полимеров методом рассеяния света. Для рефрактометрического анализа растворов в широких диапазонах концентраций пользуются таблицами или эмпирическими формулами, важнейшие из которых (для растворов сахарозы, этилового спирта и др.) утверждаются международными соглашениями и лежат в основе построения шкал специализированных рефрактометров для анализа промышленной и сельскохозяйственной продукции. Разработаны способы анализа трехкомпонентных растворов, основанных на одновременном определении n и плотности или вязкости, либо на осуществлении химических превращений с измерением n исходных и конечных растворов; эти способы применяют при контроле нефтепродуктов, фармацевтических препаратов и др. Идентификация органических соединений, минералов, лекарственных веществ осуществляется по таблицам n, приводимым в справочных изданиях. Преимуществами рефрактометрического метода являются его простота и относительно невысокая стоимость приборов для определения коэффициента преломления света.

 

 

1 Некоторые понятия физической оптики

    1. Распространение света

 

Первая гипотеза –  эмиссионная или корпускулярная, утверждала, что свет представляет собой поток мельчайших частиц –  корпускул, испускаемых нагретым светящимся телом. Достигая глаза, эти частицы отражают зрительные ощущения. Ударяясь о преграду, частицы отражаются от её поверхности или проникают внутрь в зависимости от свойств материала тела.

Легко объясняя законы отражения  света, эта гипотеза не могла объяснить  некоторые особенности преломления  света и вовсе не объясняла  интерференцию света.

Вторая гипотеза – волновая, утверждала, что частицы, испускаемые светящимся телом, находятся в состоянии  чрезвычайно быстрых колебаний, генерирующих волны, которые распространяются во все стороны и, достигая глаза, вызывают зрительные ощущения. Волновая теория хорошо объясняла интерференцию света и другие явления, недоступные корпускулярной гипотезе, но была не в состоянии объяснить, каким образом распространяются волны в вакууме. Впоследствии эта неясность была устранена признанием за световыми волнами электромагнитного характера. Таким образом, свет по этой гипотезе представляет собой быстро меняющееся электромагнитное поле.

В дальнейшем с накоплением экспериментальных  данных и их теоретической интерпретации, удалось установить особый, двойственный, характер световых явлений и свести обе, казалось, взаимоисключающие гипотезы в одну стройную, свободную от внутренних противоречий теорию. В соответствии с этой теорией свет равноправно может рассматриваться и как волновое движение электромагнитной природы, и как поток частиц, излучаемых источником света в виде отдельных порций света – квантов или фотонов.

Вместе с тем световые явления могут рассматриваться  также и с позиции геометрической или лучевой оптики, представляющей собой применение геометрических построений и теорем.

Фундаментом для сближения геометрии  с учением о свете и развития лучевой оптики явились представления о прямолинейности распространения света. Лучевая оптика и в настоящее время сохраняет ведущую роль во всех оптических и светотехнических расчётах, благодаря их простоте и наглядности, и показывает обычно полное соответствие вычисленных и экспериментальных данных.

Лучевая оптика базируется на трёх основных приложениях:

  • прямолинейности распространения света в однородной среде;
  • поведении света на границе раздела двух сред при условии, что такая граница представляет собой идеально гладкую поверхность;
  • независимости распространения света.

Указанные положения  установлены эмпирически, т. е. опытным  путём посредством сравнения геометрических соотношений без учёта особенностей, связанных со сложной природой света.

Чтобы оперировать только наглядными геометрическими элементами, в лучевой оптике введены два  условных понятия о луче и о  светящейся точке.

Под лучом понимают направление, по которому распространяется свет. Экспериментально установлено, что в вакууме и в однородной (газовой, жидкой или твёрдой) прозрачной среде (например, в воздухе при постоянном давлении, в воде или стекле) свет распространяется прямолинейно, и луч представляет собой прямую линию, началом которой является источник света.

Под светящейся точкой понимают источник света, незначительными размерами  которого можно пренебречь. Физически  любой источник света обладает определёнными размерами, однако, если сравнить эти размеры с теми расстояниями, на которые распространяется действие света, то условно (без существенной погрешности) источник света принимают за точку.

От светящейся точки  света расходится во все стороны  в виде пучка бесконечное число лучей, заполняющих всё окружающее пространство. Такой пучок называется неограниченным. Однако, если на пути такого пучка поместить диафрагму – непрозрачный экран с отверстием, то за диафрагмой свет будет распространяться уже как ограниченный пучок.

Уменьшая отверстие  диафрагмы, можно выделять всё более и более тонкие пучки. Казалось бы, это должно привести к столь тонкому пучку, что его можно считать «отдельным лучом». Однако опыт не подтверждает это предположение. При уменьшении диаметра отверстия лучи теряют прямолинейность и начинают огибать его края, и тем больше, чем меньше становится отверстие.

Явление огибания световыми (звуковыми и т. д.) волнами встречающихся  на пути препятствий называется дифракцией света и обусловлено его волновой природой. По этой причине нельзя выделить отдельный луч и в действительности существуют только пучки лучей.

 

 

1.1.2 Показатель преломления света (показатель рефракции)

 

Если на пути светового  пучка, распространяющегося в прозрачной однородной среде (например, в воздухе), встречается другая прозрачная однородная среда (например, стекло), то на границе раздела сред пучок света разделяется на два луча, из которых один луч входит в новую среду, изменяя своё направление (преломляется), а другой, отражаясь от поверхности раздела и изменяя своё направление, продолжает распространяться в первой среде. Луч при распространении в однородных средах, изменяя свою однонаправленность, сохраняет прямолинейность распространения и до, и после границы раздела (рисунок 1).

Таким образом, преломление  и отражение не противоречат прямолинейности распространения света в однородных средах.

 

Рисунок 1 - Поведение луча на поверхности раздела

 

Линия ММ на рисунке 1 изображает поверхность (границу) раздела между воздухом и стеклом. Падающий луч монохроматического света (света, условно одной длины волны) составляет с нормалью О\О к поверхности раздела сред угол АВО = α. Этот угол называется углом падения луча. В другой среде луч составляет с нормалью угол преломления ОВС = β.

Если изменять угол падения  луча α, то будет изменяться и угол преломления луча β, но при этом всегда будет сохраняться неизменным отношение синуса угла падения луча к синусу угла преломления:

 

 (1)

 

Если заменять стекло на другие однородные прозрачные среды (например, воду, другой сорт стекла), то в любом случае n будет оставаться величиной постоянной, но значения её будут другими. Причём, чем больше значение n, тем больше оптическая плотность второй среды.

Если луч входит в  какую-либо однородную прозрачную среду  не из другой прозрачной среды, а из вакуума, то такой показатель преломления называется абсолютным показателем преломления среды (N).

Поскольку значение n зависит от длины волны света (λ) и от температуры, то её измерение проводят при монохроматическом свете и постоянной температуре.

Законы преломления  света формулируются следующим  образом:

  • падающий и преломлённый лучи находятся в одной плоскости с нормалью к поверхности раздела, но расположены на противоположных сторонах от неё;
  • отношение синуса угла падения луча к синусу угла преломления для двух соприкасающихся однородных сред постоянно и не зависит от угла падения;
  • падающий и преломленный лучи взаимно обратимы, т.е., если луч, входя из одной среды в другую, идет по направлению АВС, то, выходя из второй среды в первую, он пойдет по направлению СВА.

Очевидно, при переходе из более плотной среды (стекло, рисунок 1) в менее плотную (воздух) луч удалится от нормали, а показатель преломления примет обратное соотношение:

 

 (2)

 

Показатель преломления как  постоянная величина является характеристикой вещества (подобно температуре плавления).

Свет как электромагнитное излучение при прохождении через  однородную прозрачную среду, и взаимодействуя с её частицами (молекулами, атомами, ионами), изменяет свою скорость. Наибольшая скорость распространения света достигается в вакууме ( С0 = 3·1010 м/с). В воздухе скорость света (Св) уменьшается, и значение абсолютного показателя преломления воздуха (Nв) составляет:

 

 (3)

 

Относительный показатель преломления определённой среды nс – это отношение скорости света в воздухе к скорости света в исследуемой среде (Сс):

 

 (4)

 

Таким образом, абсолютный и относительный  показатели преломления воздуха  связаны между собой соотношением:

Информация о работе Рефрактометрический метод анализа в химии