Особенности анестезии в нейрохирургии

Автор работы: Пользователь скрыл имя, 11 Марта 2012 в 13:33, творческая работа

Краткое описание

Для анестезиологического обеспечения нейрохирургических операций необходимо знание физиологии ЦНС. Многие анестетики оказывают значительное воздействие (как нежелательное, так и благоприятное) на метаболизм мозга, мозговой кровоток, образование и всасывание цереброспинальной жидкости, объем внутричерепного содержимого и внутричерепное давление.

Содержимое работы - 1 файл

Особенности анестезии в нейрохирургии.pptx

— 159.10 Кб (Скачать файл)

Особенности анестезии в нейрохирургии.  
Теоретические аспекты 

Особенности физиологии ЦНС

 

    • Для анестезиологического обеспечения нейрохирургических операций необходимо знание физиологии ЦНС. Многие анестетики оказывают значительное воздействие (как нежелательное, так и благоприятное) на метаболизм мозга, мозговой кровоток, образование и всасывание цереброспинальной жидкости, объем внутричерепного содержимого и внутричерепное давление.

  
Метаболизм мозга  

 

В покое мозг потребляет до 20 % получаемого организмом человека кислорода. Главный потре­битель энергии в мозге — это фермент  АТФ-аза, поддерживающий электрическую активность нейронов. Метаболизм в мозге обычно оценивают по потреблению кислорода мозгом, или CMRO2 (CMR — cerebral metabolic rate), которое у взрос­лых составляет в среднем 3-3,5 мл/100 г/мин (50 мл/мин). CMRO2 максимально в сером веществе коры больших полушарий и прямо пропорциональ­но биоэлектрической активности коры. Потребность мозга в кислороде по сравнению с таковой у других органов чрезвычайно велика, а запасов кислорода в нем нет. Если кровь не поступает в мозг в течение 10 с, напряжение кислорода падает ниже 30 мм рт. ст. и человек теряет сознание. Если мозговой кровоток не восстанавливается в течение 3-8 мин, то запасы АТФ истощаются и возникает необратимое повреждение нейронов. Наиболее чувствительны к гипоксии нейроны гиппокампа и мозжечка.

Нейроны обеспечиваются энергией преимущественно за счет утилизации глюкозы. В среднем потребление глюкозы мозгом равно 5 мг/100 г/мин. В ЕЩС почти вся глюкоза (> 90 % ) подвергается аэробному распаду, поэтому потребление кислорода и потребление глюкозы изменяются параллельно. При голодании главным источником энергии для мозга становятся кетоновые тела — ацетоацетат и β -гидроксибутират. Хотя мозг способен поглощать из крови молочную кислоту, ее метаболизм не играет значительной роли в энергетическом обеспечении.

Мозговой  кровоток

 

Мозговой кровоток (MK) зависит от интенсивнос­ти метаболизма. Мозговой кровоток чаще всего изучают с помощью изотопных методов исследо­ваний (обычно измеряют γ~излучение изотопа ксенона [153Xe]). После в/в инъекции изотопа дат­чики, установленные по окружности головы, реги­стрируют темп изменения радиоактивности, кото­рый пропорционален величине MK. Новейшей методикой исследования MK является позитрон-ная эмиссионная томография (ПЭТ); в сочетании с применением короткоживущих изотопов 11C и 15O ПЭТ позволяет измерить потребление мозгом глюкозы и кислорода соответственно.

ПЭТ подтвердила полученные другими методами данные, что регионарный мозговой кровоток (РМК) изменяется прямо пропорционально интенсивности метаболизма и варьируется от 10 до 300 мл/100 г/ мин. Например, при движениях в конечности быстро возрастает РМК в соответствующем участке двигательной коры. Аналогичным образом активизация зрения приводит к увеличению РМК в зрительной коре затылочных долей мозга.

 

Хотя MK равен в среднем 50 мл/100 г/мин, в сером веществе головного мозга он достигает 80 мл/100 г/мин, в белом веществе — 20 мл/100 г/мин. MK у взрослых в среднем составляет 750 мл/мин, что соответствует 15-20 % от сердечного выброса. При MK ниже 20-25 мл/100 г/мин возникает по­вреждение мозга, что на ЭЭГ проявляется замедле­нием ритма. MK в пределах 15-20 мл/100 г/мин сответствует изоэлектрической линии на ЭЭГ, а при уменьшении MK до 10 мл/100 г/мин наступает необратимое повреждение мозга.

 

Регуляция мозгового кровообращения  

 

 Церебральное перфузионное давление (ЦПД) —это разница между средним артериальным давлением (АДср) и ВЧД. Если церебральное венозное давление значительно превышает ВЧД, то ЦПД равно разнице между АДср и церебральным венозным давлением.

В физиологических условиях ВЧД незначительно отличается от церебрального венозного давления, поэтому принято считать, что ЦПД = АДср - ВЧД. В норме церебральное перфузионное давление составляет 100 мм рт. ст. и зависит главным образом от АДср, потому что ВЧД у здорового человека не превышает 10 мм рт. ст.

 

При выраженной внутричерепной гипертензии (ВЧД > 30 мм рт. ст.) ЦПД и MK могут значительно снижаться даже при нормальном АДср. ЦПД < 50 мм рт. ст. проявляется замедлением ритма на ЭЭГ, ЦПД в пределах от 25 до 40 мм рт. ст. — изолинией на ЭЭГ, а при устойчивом снижении ЦПД менее 25 мм рт. ст. возникает необратимое повреж­дение мозга.

 

АУТОРЕГУЛЯЦИЯ МОЗГОВОГО КРОВООБРАЩЕНИЯ

 

В головном мозге, так же как в сердце и 

почках, даже значительные колебания 

АД не оказывают  существенного влияния

 на кровоток. Сосуды мозга быстро 

реагируют на изменение  ЦПД. Снижение

 ЦПД вызывает  вазодилатацию сосудов

мозга, увеличение ЦПД — вазоконстрикцию. У здоровых людей MK остается неизменным при колебаниях АДср в пределах от 60 до 160 мм рт. ст. Если АДср выходит за границы этих значений, то ауторегуляция MK нарушается. Увеличение АДср до 160 мм рт. ст. и выше вызывает повреждение ге-матоэнцефалического барьера, чреватое отеком мозга и геморрагическим инсультом

При хронической  артериальной гипертонии кривая ауторегуляции мозгового кровообраще­ния смещается вправо, причем сдвиг затрагивает и нижнюю, и верхнюю границы. При артериальной гипертонии снижение АД до обычных значений (меньше измененной нижней границы) приводит к уменьшению MK, в то время как высокое АД не вызывает повреждения мозга. Длительная гипотензивная терапия может восстановить ауторегуляцию мозгового кровообращения в физиологических границах

Существуют две теории ауторегуляции мозгового кровообращения — миогенная и метаболическая. Миогенная теория объясняет механизм ауторегуляции способностью гладкомышечных клеток церебральных артериол сокращаться и расслабляться в зависимости от АДср

Согласно метаболической теории, тонус церебральных артериол зависит от потребности мозга в энергетических субстратах. Когда потребность мозга в энергетических субстратах превышает их доставку, в кровь выделяются тканевые метаболиты, которые вызывают церебральную вазодилатацию и увеличение MK. Этот механизм опосредуют ионы водорода, а также другие вещества — оксид азот (NO), аденозин, простагландины и, возможно, градиенты ионной концентрации.

 

Влияние других факторов на мозговой кровоток.

 

Парциальное давление CO2 и O2 в крови

Парциальное давление CO2 в артериальной крови (PaCO2) — наиболее важный внешний фактор, вли­яющий на MK. MK прямо пропорционален PaCO2 в пределах от 20 до ЗОммрт. ст. (рис. 25-2). Увели­чение PaCO2 на 1 мм рт. ст. влечет за собой мгновен ное повышение MK на 1-2 мл/100 г/мин, уменьшение PaCO2 приводит к эквивалентному снижению MK.

 

Этот эффект опосредуется через рН цереброспинальной жидкости и вещества мозга. Поскольку CO2, в отличие от ионов, легко проникает, через гематоэнцефалический барьер, то на MK влияет именно острое изменение PaCO2, а не концентрации HCO3. Через 24-48 ч после начала гипо- или гиперкапнии развивается компенсаторное изменение концентрации HCO3в спинномозговой жидкости.

При  выраженной     гипервентиляции

(PaCO2 <20 мм рт.ст.)даже у    здоровых

людей   на ЭЭГ   появляется      картина,

аналогичная таковой при повреждении

головного мозга.Острый  метаболичес-

кий ацидоз не оказывает  значительного

влияния на MK, потому что ион водорода (H+) плохо проникает через гематоэнцефалический барьер. Что касается PaO2, то на MK оказывают воздей­ствие только его значительные изменения. В то вре­мя как гипероксия снижает MK не более чем на 10 %, при тяжелой гипоксии (PaO2 < 50 мм рт. ст.) MK увеличивается в гораздо большей степени

Температура тела

Изменение MK составляет 5-7 % на 1 0C. Гипотермия снижает CMRO2 и MK, в то время как гипер-термия оказывает обратный эффект. Уже при   20 0C на ЭЭГ регистрируют изолинию, но дальнейшее уменьшение температуры позволяет еще сильнее снизить потребление кислорода мозгом. При температуре выше 42 0C потребление кислорода мозгом также снижается, что, по-видимому, обусловлено повреждением нейронов.

 

Вязкость крови

У здоровых людей вязкость крови не оказывает значительного влияния на MK. Вязкость крови  
в наибольшей степени зависит от гематокрита, поэтому снижение гематокрита уменьшает вязкость и увеличивает MK. К сожалению, помимо этого благоприятного эффекта, снижение гематокрита имеет и отрицательную сторону: оно уменьшает кислородную емкость крови и, соответственно, доставку кислорода. Высокий гематокрит, например при тяжелой полицитемии, увеличивает вязкость крови и снижает MK. Исследования показали, что для лучшей доставки кислорода к мозгу гематокрит должен составлять 30-34%.

 

Вегетативная  нервная система

Внутричерепные  сосуды иннервируются симпатическими (вазоконстрикторными), парасимпатическими (вазодилатирующими) и нехолинергическими неадренергическими волокнами; нейротрансмитте-ры в последней группе волокон — серотонин и вазо-активный интестинальный пептид. Функция вегетативных волокон сосудов мозга в физиологических условиях неизвестна, но продемонстрировано их участие при некоторых патологических состояниях. Так, импульсация по симпатическим волокнам pis верхних симпатических ганглиев может значитель­но сузить крупные мозговые сосуды и уменьшить MK. Вегетативная иннервация мозговых сосудов играет важную роль в возникновении церебрального вазоспазма после ЧMT и инсульта.

 

Гематоэнцефалический  барьер  

 

Между эндотелиальными  клетками мозговых со­судов практически  отсутствуют поры. Малочисленность пор — основная морфологическая осо­бенность гематоэнцефалического барьера. Липидный барьер проницаем для жирорастворимых веществ, но значительно ограничивает проникновение ионизированных частиц и крупных молекул.

Проницаемость гематоэнцефалического  барьера для молекулы какого-либо вещества зависит от ее размера, заряда, липофильности и степени связывания с белками крови. Углекислый газ, кислород и липофильные вещества (к которым относят большинство анестетиков) легко проходят через гематоэнцефалический барьер, в то время как для большинства ионов, белков и крупных молекул (например, маннитола) он практически непроницаем.

 

Вода свободно проникает  через гематоэнцефа­лический барьер по механизму объемного тока, а  пе­ремещение даже небольших ионов  затруднено (вре­мя полу выравнивания для натрия составляет 2-4 ч). В результате быстрые изменения концентрации электролитов плазмы (а значит, и  осмолярности)  
вызывают преходящий осмотический градиент между плазмой и мозгом. Остро возникшая гипертоничность плазмы приводит к перемещению воды из вещества мозга в кровь. При острой гипотоничности плазмы, наоборот, происходит перемещение воды из крови в вещество мозга. Чаще всего равновесие восстанавливается без особых последствий, но в ряде случаев существует опасность быстро раз­вивающихся массивных перемещений жидкости, чреватых повреждением мозга.

Целостность гематоэнцефалического  барьера нарушают тяжелая артериальная гипертензия, опухоли мозга, ЧМТ, инсульт, инфекции, выражен­ная гиперкапния, гипоксия, устойчивая судорожная активность. При этих состояниях перемещение жидкости через гематоэнцефалический барьер определяется не осмотическим градиентом, а гидростатическими силами.

 

Цереброспинальная жидкость

 

Цереброспинальная жидкость находится в желу­дочках и цистернах головного мозга, а также в суб-арахноидальном пространстве ЦНС. Главная функция цереброспинальной жидкости — защита мозга от травмы.

Большая часть  цереброспинальной жидкости вырабатывается в сосудистых сплетениях желу­дочков  мозга (преимущественно в боковых). Неко­торое количество образуется непосредственно  в клетках эпендимы желудочков, а  совсем неболь­шая часть — из жидкости, просачивающейся через периваскулярное пространство сосудов мозга (утечка через гематоэнцефалический барьер).

У взрослых образуется 500 мл цереброспинальной жидкости в сутки (21 мл/ч), в то время как объем  цереброспинальной жидкости составляет только 150 мл. Из боковых желудочков цереброспиналь­ная жидкость через  межжелудочковые отверстия (отверстия Монро) проникает в третий желудочек, откуда через водопровод мозга (сильвиев водопро­вод) попадает в четвертый желудочек. Из четвертого желудочка через срединную апертуру (отверс­тие Мажанди) и боковые апертуры (отверстия Люшка) цереброспинальная жидкость поступает в мозжечково-мозговую (большую) цистерну, а оттуда — в субарахноидальное пространство головного и спинного мозга, где и цир-  
кулирует до тех пор, пока не всасывается в грануляциях паутинной оболочки больших полушарий.

Для образования цереброспинальной  жидкости необходима активная секреция натрия в сосудистых сплетениях. Цереброспинальная  жидкость изото-нична плазме, несмотря на более низкую концентра­цию калия, бикарбоната и глюкозы. Белок поступает в цереброспинальную жидкость только из перивас-кулярных пространств, поэтому его концентрация очень невелика. Ингибиторы карбоангидразы (аце-тазоламид), кортикостероиды, спиронолактон, фу-росемид, изофлюран и вазоконстрикторы уменьша­ют выработку цереброспинальной жидкости.

Цереброспинальная жидкость всасывается в гра­нуляциях паутинной  оболочки, откуда попадает в венозные синусы. Небольшое количество всасывается через лимфатические сосуды мозговых оболочек и периневральные муфты. Обнаружено, что всасывание прямо пропорционально ВЧД и обратно пропорционально церебральному венозному давлению; механизм этого явления неясен. Поскольку в головном и спинном мозге нет лимфатических сосудов, всасывание цереброспинальной жидкости — основной путь возвращения белка из интерстициальных и периваскулярных пространств мозга обратно в кровь.

 

Внутричерепное  давление  

 

Череп представляет собой жесткий футляр с нерастягивающимися стенками. Объем полости черепа неизменен, его занимает вещество мозга (80 %), кровь (12 %) и цереброспинальная жидкость (8 %). ВЧД измеряют с помощью датчиков, установленных в боковом желудочке или на поверх­ности полушарий головного мозга; в норме его величина не превышает 10 мм рт. ст. Давление цереброспинальной жидкости, измеренное при люмбальной пункции в положении больного лежа на боку, достаточно точно соответствует величине ВЧД, полученной с помощью внутричерепных датчиков.

Информация о работе Особенности анестезии в нейрохирургии