Автор работы: Пользователь скрыл имя, 22 Декабря 2011 в 00:06, доклад
Лучевая терапия является одним из ведущих методов лечения больных со злокачественными новообразованиями, некоторыми системными и неопухолевыми заболеваниями. Как самостоятельный метод или в сочетании с хирургическим или с химиотерапией лучевая терапия показана и эффективна более чем у 75% больных со злокачественными опухолями.
При решении
вопросов защиты от нейтронного излучения
необходимо учитывать специфику
его взаимодействия с веществом.
Для быстрых нейтронов
Нейтронозахватывающая терапия. Впервые метод предложен Locher в 1936 г. При этом методе используется поток медленных нейтронов, получаемых от ядерных реакторов. Для дифференцированного облучения с максимальным эффектом в опухоли и минимальным в нормальных тканях необходимо насыщение опухоли элементами, характеризующимися большим поперечным сечением захвата медленных нейтронов. Такими элементами являются бор (10В) и литий (6Li). Однако туморотропностью эти элементы не обладают. Для обогащения ими опухоли использована различная скорость диффузии их из кровеносной системы в ткани (т.е. эти элементы медленно переходят из крови в головной мозг, а в опухолевую ткань поступают значительно быстрее). Установлено, что через 30 минут после внутривенного введения соединений бора его концентрация в опухоли мозга в 4-5 раз выше, чем в нормальной ткани. И именно в это время должно проводиться облучение. Концентрация бора и лития в мышечной ткани очень велика, и поэтому нейтронозахватывающую терапию нельзя применять при опухолях туловища и конечностей. Этот метод применим только при опухолях мозга.
Фотонные ионизирующие излучения
К фотонным ИИ относятся
-излучение радиоактивных
-излучение возникает при радиоактивном распаде. Переход ядра из возбужденного в основное состояние сопровождается излучением -кванта с энергиями от 10 кэВ до 5 МэВ. Основными терапевтическими источниками -излучения являются -аппараты (пушки).
Тормозное рентгеновское излучение возникает за счет ускорения и резкого торможения электронов в вакуумных системах различных ускорителей и отличается от рентгеновского большей энергией квантов (от одного до десятков МэВ).
При прохождении потока фотонов через вещество происходит его ослабление в результате следующих процессов взаимодействия (тип взаимодействия фотонов с атомами вещества зависит от энергии фотонов):
ь Классическое (когерентное, или томпсоновское, рассеяние) - для фотонов с энергией от 10 до 50-100 кэВ. Относительная частота этого эффекта мала. Происходит взаимодействие, которое существенной роли не играет, так как падающий квант, столкнувшись с электроном, отклоняется, и его энергия не меняется.
ь Фотоэлектрическое поглощение (фотоэффект) - при относительно малых энергиях - от 50 до 300 кэВ (играет существенную роль при рентгенотерапии). Падающий квант выбивает орбитальный электрон из атома, сам при этом поглощается, а электрон, немного изменив направление, улетает. Этот улетевший электрон называется фотоэлектроном. Таким образом, энергия фотона тратится на работу выхода электрона и на придание ему кинетической энергии.
ь Эффект Комптона (некогерентное рассеяние) - возникает при энергии фотона от 120 кэВ до 20 МэВ (т.е. практически весь спектр лучевой терапии). Падающий квант выбивает электрон с наружной оболочки атома, передавая ему часть энергии, и меняет свое направление. Электрон вылетает из атома под определенным углом, а новый квант отличается от первоначального не только иным направлением движения, но и меньшей энергией. Образовавшийся квант будет косвенно ионизировать среду, а электрон - прямо.
ь Процесс образования электронно-позитронных пар - энергия кванта должна быть больше 1,02 МэВ (удвоенной энергии покоя электрона). С этим механизмом приходится считаться при облучении больного пучком тормозного излучения высокой энергии, т.е. на высокоэнергетических линейных ускорителях. Вблизи ядра атома падающий квант испытывает ускорение и исчезает, преобразовываясь в электрон и позитрон. Позитрон быстро объединяется со встречным электроном, и происходит процесс аннигиляции (взаимного уничтожения), а взамен возникают два фотона, энергия каждого из которых вдвое меньше энергии исходного фотона. Таким образом, энергия первичного кванта переходит в кинетическую энергию электрона и в энергию аннигиляционного излучения.
ь Фотоядерное поглощение - энергия квантов должна быть больше 2,5 МэВ. Фотон поглощается ядром атома, в результате чего ядро переходит в возбужденное состояние и может либо отдать электрон, либо развалиться. Таким образом получаются нейтроны.
В результате вышеперечисленных
процессов взаимодействия фотонного
излучения с веществом
Пространственное ослабление пучка фотонов происходит по экспоненциальному закону (закону обратных квадратов): интенсивность излучения обратно пропорциональна квадрату расстояния до источника излучения.
Излучение в
диапазоне с энергией от 200 кэВ
до 15 МэВ нашло самое широкое
применение в терапии злокачественных
новообразований. Большая проникающая
способность позволяет
II. Биологические основы лучевой терапии
В основе применения
ИИ в ЛТ злокачественных опухолей
лежат глубокие знания биологического
действия ИИ на различные органы, ткани
и опухоли, которое представляет
собой чрезвычайно сложный
Биологическое действие ИИ
В биологическом
действии ИИ первым звеном является поглощение
энергии излучения с
В результате ионизации атома или молекулы возникает два иона с положительным и отрицательным зарядом. Оба иона нестабильны, химически активны, имеют выраженную тенденцию к соединению с центральными молекулами, при возбуждении которых меняется электронная конфигурация молекулы, что может привести к разрыву ее молекулярных связей. Продукты расщепления прореагировавших молекул также оказываются химически активными и, в свою очередь, вступают в химические реакции с нейтральными молекулами. Ионизация молекул воды, которой в организме более 80%, ведет к ее расщеплению и образованию Н+, ОН, Н2О2, Н2, обладающих значительной химической активностью и вызывающих окисление растворимых в воде веществ.
Таким образом, первичные физические процессы - ионизация и возбуждение атомов и молекул - приводят к химической перестройке облученных молекул. В первичном механизме биологического действия различают прямое действие (изменения, возникающие в молекулах клеток в результате ионизации или возбуждения) и непрямое (объединяет все химические реакции, протекающие с химически активными, но не ионизированными продуктами диссоциации ионизированных молекул).
Процессы ионизации
и возбуждения являются пусковыми
механизмами, которые определяют все
последующие изменения в
Непрямое действие излучений вызывает менее грубые нарушения, часто обратимые, но они охватывают большее число молекул в объеме тканей, значительно превышающем размеры полей облучения. Примером непрямого действия может служить общая реакция организма, лейкопения, развивающаяся и в тех случаях, когда костный мозг исключен из зоны облучения.
Интенсивность реакций, связанных с прямым и непрямым механизмами действия ИИ, зависит помимо исходного состояния организма от ряда физических и химических факторов. К физическим факторам относятся доза и ее мощность - с их увеличением биологический эффект усиливается. Также биологический эффект зависит от качества излучения, которое характеризуется ЛПЭ и ЛПИ, так как эффект облучения обусловлен не только количеством поглощенной энергии, но и ее макро - и микрораспределением в тканях.
Из химических
факторов, оказывающих влияние на
биологический эффект, наиболее отчетливо
влияние кислорода. В присутствие
кислорода возникает большое
количество химически активных радикалов
и перекисей, усиливающих процессы
окисления в облучаемых тканях. Продолжительность
жизни первичных радикалов не
превышает долей секунды, а вновь
образованные окислители существуют длительное
время. При этом могут возникать
цепные реакции, а возникающие цепи
тем длиннее, чем выше содержание
кислорода. Кислород может вступать
в реакцию с некоторыми ионизированными
молекулами и способствовать их изменению,
которое могло бы не проявиться в
отсутствие кислорода. Увеличивая интенсивность
первичных реакций, развивающихся
под влиянием облучения, кислород повышает
радиочувствительность клетки, причем
повышение это наступает
Введение кислорода в ткани после облучения не оказывает влияния на радиочувствительность клеток, напротив, оно способствует более быстрому восстановлению их после лучевого воздействия. Противоположное действие - снижение радиочувствительности тканей - оказывают так называемые протекторы - вещества, связывающие кислород и радикальные группы и, таким образом, подавляющие развитие реакции непрямого действия.
Изменения химической
структуры атомов и молекул под
влиянием облучения ведут к развитию
в клетках биохимических