Автор работы: Пользователь скрыл имя, 04 Декабря 2012 в 10:48, реферат
Средняя скорость мозгового кровотока составляет 0,5 мл*г-1 * мин-1, т.е. примерно 750 мл/мин (масса мозга взрослого человека около 1500г). Эта величина составляет 13% общего сердечного выброса. Скорость кровотока в сером веществе, богатом нейронами, значительно выше, чем в белом. При чрезвычайно сильном возбуждении нейронов головного мозга (пример, генерализованные судороги) мозговой кровоток может увеличиться на 50%. Возможно так же увеличение кровотока в отдельных отделах мозга при усилении их активности, при этом общий мозговой кровоток изменится незначительно. Если коронарный кровоток при физической нагрузке возрастает в 10–15 раз и более, то мозговой кровоток при интенсивной умственной деятельности в целом не возрастает, лишь перераспределяется из областей мозга менее активных в функциональном отношении в области с интенсивной деятельностью.
Мысль о существовании барьера между кровью и мозгом впервые высказал Пауль Эрлих в 1885 г. К этому времени накопились данные о том, что красители (например, трипановый синий) после введения их в кровь не обнаруживаются в мозге. В 1913 г. Голдманн показал, что если краситель вводить не в вену, а в ликвор, то мозг окрашивается. Тем не менее долгое время существовала и противоположная точка зрения: барьера нет, красители не проходят в мозг потому, что мозг не содержит соединительной ткани т. е. для красителя в мозге просто нет места. Только в 60—е годы мнение о существовании ГЭБ стало общепринятым.
Термин «гистогематические барьеры» предложила наша соотечественница Л. С. Штерн в 1929 г. Сейчас он понимается как общее название для барьеров: гематоэнцефалического (ГЭБ), — ликворного (ГЛБ), — неврального, — офталъмического, — тестикулярного, — лабиринтного, —плеврального, — синовиального и др. В 1933 г. Вальтер и Шпац ввели понятие «гематоэнцефалический барьер».
Создание особой внутренней среды мозга, во—первых, защитило его нейроны от колебаний внутренней среды организма, связанных с потреблением пищи и двигательной активностью, и обеспечило стандартные условия для интегративной деятельности нейронов и синаптической передачи; во—вторых, позволило нейронам мозга при передаче друг другу сообщений гуморальным путем экономно использовать запасы нейросекретов и уменьшило искажение передаваемой информации.
Потребность в барьере
была настолько сильной, что он независимо
возник не менее чем в трех ветвях
эволюции, выделившихся 500—600 млн. лет
назад, и имеется у всех таксонов,
способных к сложному поведению:
у позвоночных головоногих
2.1 Структура барьера
Как известно, капилляры мозга принципиально отличаются от капилляров всех других областей тела отсутствием в их стенке водных каналов, пор, или фенестр. Под электронным микроскопом отчетливо видно, что эндотелиоциты мозговых капилляров соединены между собой, так называемыми плотными контактами, которые не позволяют водорастворимым веществам проходить из крови в головной мозг (и обратно). На электронограммах также видны и отростки астроцитов, охватывающие всю (или почти всю) наружную поверхность мозговых капилляров.
Эти отростки не составляют
механического препятствия
В середине 60—х годов было
открыто существование «
Феномен ГЭБ пытались объяснить еще и тем, что введенный в кровоток краситель связывается с белками плазмы и это делает его неспособным проникнуть сквозь барьер. Однако связывание с белками плазмы не препятствует окрашиванию всех прочих (немозговых) тканей, поэтому сегодня фактору связывания придается небольшое значение.
Итак, ГЭБ состоит, по меньшей мере, из трех главных компонентов: (1) плотных контактов в эндотелии капилляров; (2) веществ, секретируемых отростками астроцитов и поддерживающих функцию плотных контактов; и (3) «барьерных энзимов».
В 1902 г. Эрлих заметил,
что красители, поглощаемые
Для жирорастворимых
веществ ГЭБ барьером вообще
не является: они простой диффузией
легко проходят сквозь
Никакие живые клетки не являются препятствием для веществ, обладающих высокой липофильностью (или, что то же самое, гидрофобностью). Наиболее высокой «проходимостью» обладает углекислый газ, легко проникающий из крови в нейроны дыхательного центра. Довольно высокой растворимостью, соответственно, «проходимостью» обладают героин, алкоголь и никотин, что объясняет их быстрое (после попадания в кровь) действие на ЦНС. Следовательно, липофильность — главное из качеств, определяющих возможность простои диффузии вещества сквозь ГЭБ. На «проходимость» вещества диффузией также влияют степень его ионизации, молекулярная масса и некоторые другие факторы.
Мозг нуждается в некоторых веществах, не обладающих способностью растворяться в жирах, например, в глюкозе — для обеспечения своих энергетических потребностей, и в аминокислотах — для синтеза белков. Поскольку гидрофильные вещества простой диффузией пройти в мозг не могут, для их доставки существуют транспортные системы со специфическими белками—переносчиками (рис. 3.74, путь 1Б). Сейчас известны транспортные системы для: (а) D—глюкозьг; (б) крупных нейтральных аминокислот; (в) основных и кислых аминокислот; (г) электролитов (K+, Mg2+, Ca2+, I— и др.); (д) водорастворимых витаминов; (е) нуклеозидов и др. Все эти системы обладают общими свойствами: селективностью, стереоспецифичностью, конкурентным ингибированием и насыщаемостью.
Мелкие нейтральные
В головном мозгу есть области, в которые, в отличие от основной его массы, краситель легко проходит из крови. Впервые это обнаружил Шульманн в 1912г.: трипановый синий, введенный мышам внутривенно, проникал в нейрогипофиз. Количество областей, обладающих такими особенностями, постепенно росло, и сейчас включает: нейрогипофиз, медиальное возвышение, самое заднее поле, субфорникальный орган, шишковидное тело, зрительное углубление, сосудистое сплетение и сосудистый орган конечной пластинки. Поскольку все эти структуры расположены по периферии желудочковой системы, было предложено называть их циркумвентрикулярными органами. Только один из них не обладает названными особенностями: в субкомиссуральном органе эндотелиоциты соединены плотными контактами.
В циркумвентрикулярных органах переносимые кровью вещества относительно свободно покидают просвет капилляров и доходят до наружной границы желудочков мозга, где их задерживают плотные контакты, которыми соединены клетки выстилающей желудочки эпендимы. Эту особую организацию барьера в циркумвентрикулярных органах часто ошибочно принимают за «дефекты» в барьере. В действительности, барьер в этих областях не менее эффективен, только разделительную функцию выполняет не эндотелий капилляров, а эпендима желудочков мозга. Таким образом, барьер здесь просто отнесен чуть далее вглубь мозговой ткани и носит название гематоликворного (ГЛБ). Площадь ГЛБ составляет 1/5000 общей площади ГЭБ.
Полагают, что некоторая часть молекул веществ, оказавшихся в циркумвентрикулярных органах, может проникнуть в собственно мозг:
Некоторая часть сосудов мозга выпячивается в желудочковую систему и образует в ней сосудистое сплетение — орган, продуцирующий ликвор. Капилляры этих сплетений имеют фенестры, сквозь которые вещества легко покидают кровь, но в дальнейшем задерживаются хориоидным эпителием, составляющим единое целое с остальной эпендимой. Дальнейшее продвижение (в ликвор) возможно только простой диффузией, в соответствии с липофильностью конкретного вещества.
Возможно, единственный путь, по которому водорастворимые вещества в значительных количествах без помощи специальных транспортных систем попадают в мозг, начинается на слизистой оболочке полости носа. Пероксидаза хрена (белок с молекулярной массой 40 кДа), введенная интраназально, за несколько минут достигает пиальной поверхности обонятельных луковиц. Водные растворы нейропептидов вызывают ЦНС—зависимые эффекты (например, интраназальное введение человеку вазопрессина приводит к отчетливому повышению настроения). В этом случае диффузия происходит либо внутри аксонов обонятельных нейронов, либо через подслизистый слой связанный с подпаутинным пространством в области обонятельных луковиц. Нарушение целостности слизистой оболочки (например, при рините) способствует проникновению веществ в мозг именно этим путем.
Гидрофильные молекулы из крови могут попадать в мозг внутриаксональным транспортом, например, по волокнам чувствительных нейронов.
Специальные транспортные системы выносят из мозга в кровь метаболиты самого мозга (их накопление могло бы нарушить его работу) и токсические вещества, которые все—таки в небольших количествах проникают в мозг сквозь ГЭБ. Самый простой, неизбирательный механизм выноса состоит в том, что избыток ликвора периодически сбрасывается в кровь через ворсинки паутинной оболочки, выдвинутые в просвет венозных синусов.
Ворсинки выполняют роль клапанов, регулирующих отток: быстрое поступление ликвора в венозный синус повышает давление в нем, ворсинка сдавливается, и отток ликвора прекращается. У человека за 1 сут образуется примерно 500 мл ликвора, следовательно, сопоставимое количество его оттекает ежедневно в венозную кровь.
Создание в ходе эволюции механизмов, выносящих в кровь пенициллины, цефалоспорины и некоторые цитостатики, в нормальных условиях отсутствующие в мозге и применяемые при лечении воспалительных процессов ЦНС, объясняют тем, что небольшие количества этих веществ синтезируются микрофлорой кишечника, а также попадают в организм с растительной пищей и проникают сквозь ГЭБ в мозг.
Важную роль в системах, выводящих вещества из мозга в кровь, играет особый белок — гликопротеин Р (Pgp). Обычно он присутствует в ГЭБ в небольших количествах. При наличии в мозге очагов воспаления или опухолей проницаемость барьера возрастает, введенные в кровь антибиотики и цитостатики легко проникают в ЦНС. В ответ на это происходит экспрессия гена, ответственного за синтез Pgp, его количество в структуре ГЭБ возрастает и он быстро выводит названные вещества из мозга.
Спинномозговая жидкость
(синоним цереброспинальная
В норме спинномозговая жидкость бесцветна и прозрачна. Количество ее колеблется от 15 до 20 мл у новорожденных и 100— 150 мл у взрослых. Удельный вес спинномозговой жидкости составляет 1006—1012, реакция слабощелочная (рН равна 7,4— 7,6). Спинномозговая жидкость состоит из водной части и сухого остатка, в который входят органические и неорганические вещества. Количество белка в спинномозговой жидкости колеблется от 12 до 43 мг%. Белок состоит из альбуминов и глобулинов. Общий азот 16—22 мг%, остаточный азот 12—28 мг%; у детей 17— 26 мг%. Сахар составляет 40—70 мг%. Хлориды 680—720 мг%. Обнаруживается незначительное количество липидов, аминокислот, микроэлементов и некоторых других веществ. В спинномозговой жидкости в небольшом количестве содержатся клетки (лимфоциты, встречаются плазматические клетки, моноциты). У взрослых в 1 мм3 спинномозговой жидкости имеется 1—5 клеток; у новорожденных — 20—25 клеток в 1 мм3, к одному году количество клеток уменьшается до 12—15 клеток в 1 мм3.