Задача по "Высшей математике"

Автор работы: Пользователь скрыл имя, 28 Ноября 2012 в 21:02, задача

Краткое описание

Авиакомпания «Небесный грузовик», обслуживающая периферийные районы страны, располагает А1 самолетами типа 1, А2 самолетами типа 2, А3 самолетами типа 3, которые она может использовать для выполнения рейсов в течение ближайших суток. Грузоподъемность (в тысячах тонн) известна: В1 для самолетов типа 1, В2 для самолетов типа 2, В3 для самолетов типа 3.

Содержимое работы - 1 файл

задача. Исследование операций. 26 вар..docx

— 46.41 Кб (Скачать файл)

Авиакомпания «Небесный  грузовик», обслуживающая периферийные районы страны, располагает А1 самолетами типа 1, А2 самолетами типа 2, А3 самолетами типа 3, которые она может использовать для выполнения рейсов в течение ближайших суток. Грузоподъемность (в тысячах тонн) известна: В1 для самолетов типа 1, В2 для самолетов типа 2, В3 для самолетов типа 3.

Авиакомпания обслуживает  два города. Первому городу требуется  тоннаж в С1, а второму – в С2 т. Избыточный тоннаж не оплачивается. Каждый самолет в течение дня может выполнить только один рейс.

Расходы, связанные с перелетом  самолетов по маршруту «центральный аэродром – пункт назначения», обозначены символом aij, где первый индекс соответствует номеру города, а второй – типу самолета.

А1=8, А2 = 15, А3 =12, В1 = 45, В2 = 7, В3 = 4,  С1 = 20000, С2 = 30000, a11= 23,  
a12 = 5, a13 = 1.4, a21 = 58, a22 = 10, a23 =3.8.

Решение

1. Составим математическую модель задачи. Возьмём в качестве целевой функции расходы на перелеты самолетов (соответственно, необходима минимизация целевой вункции), а в качестве переменных – число рейсов в день xij, где первый индекс соответствует номеру города, а второй – типу самолета.

Целевая функция:

Ограничений задачи:

Основная задача линейного  программирования:

2. Правую часть уравнений (ограничения и целевую функцию) представляем в виде разности между свободным членом и суммой всех остальных:

Составим симплекс – таблицу:

 

 

bi

x11

x12

x13

x21

x22

x23

 

0

 

23

 

5

 

7/5

 

58

 

10

 

19/5

 
                           

y1

8

 

1

 

0

 

0

 

1

 

0

 

0

 
                           

y2

15

 

0

 

1

 

0

 

0

 

1

 

0

 
                           

y3

12

 

0

 

0

 

1

 

0

 

0

 

1

 
                           

y4

-20000

 

-45

 

-7

 

-4

 

0

 

0

 

0

 
                           

y5

-30000

 

0

 

0

 

0

 

-45

 

-7

 

-4

 
                           
 

bi

x11

x12

x13

x21

x22

x23

 

0

 

23

 

5

 

7/5

 

58

 

10

 

19/5

 
 

-150

 

0

 

-10

 

0

 

0

 

-10

 

0

y1

8

 

1

 

0

 

0

 

1

 

0

 

0

 
 

0

 

0

 

0

 

0

 

0

 

0

 

0

y2

15

 

0

 

1

 

0

 

0

 

1

 

0

 
 

15

 

0

 

1

 

0

 

0

 

1

 

0

y3

12

 

0

 

0

 

1

 

0

 

0

 

1

 
 

0

 

0

 

0

 

0

 

0

 

0

 

0

y4

-20000

 

-45

 

-7

 

-4

 

0

 

0

 

0

 
 

0

 

0

 

0

 

0

 

0

 

0

 

0

y5

-30000

 

0

 

0

 

0

 

-45

 

-7

 

-4

 
 

105

 

0

 

7

 

0

 

0

 

7

 

0


 

 

 

bi

x11

x12

x13

x21

y2

x23

 

-150

 

23

 

-5

 

7/5

 

58

 

-10

 

19/5

 
 

-228/5

 

0

 

0

 

-19/5

 

0

 

0

 

-19/5

y1

8

 

1

 

0

 

0

 

1

 

0

 

0

 
 

0

 

0

 

0

 

0

 

0

 

0

 

0

x22

15

 

0

 

1

 

0

 

0

 

1

 

0

 
 

0

 

0

 

0

 

0

 

0

 

0

 

0

y3

12

 

0

 

0

 

1

 

0

 

0

 

1

 
 

12

 

0

 

0

 

1

 

0

 

0

 

1

y4

-20000

 

-45

 

-7

 

-4

 

0

 

0

 

0

 
 

0

 

0

 

0

 

0

 

0

 

0

 

0

y5

-29895

 

0

 

7

 

0

 

-45

 

7

 

-4

 
 

48

 

0

 

0

 

4

 

0

 

0

 

4


 

 

 

bi

x11

x12

x13

x21

y2

y3

 

-978/5

 

23

 

-5

 

-12/5

 

58

 

-10

 

-19/5

 
 

464

 

-58

 

0

 

0

 

-58

 

0

 

0

y1

8

 

1

 

0

 

0

 

1

 

0

 

0

 
 

8

 

1

 

0

 

0

 

1

 

0

 

0

x22

15

 

0

 

1

 

0

 

0

 

1

 

0

 
 

0

 

0

 

0

 

0

 

0

 

0

 

0

x23

12

 

0

 

0

 

1

 

0

 

0

 

1

 
 

0

 

0

 

0

 

0

 

0

 

0

 

0

y4

-20000

 

-45

 

-7

 

-4

 

0

 

0

 

0

 
 

0

 

0

 

0

 

0

 

0

 

0

 

0

y5

-29847

 

0

 

7

 

4

 

-45

 

7

 

4

 
 

360

 

45

 

0

 

0

 

45

 

0

 

0


 

 

 

bi

x11

x12

x13

y1

y2

y3

 

1342/5

 

-35

 

-5

 

-12/5

 

-58

 

-10

 

-19/5

 
                           

x21

8

 

1

 

0

 

0

 

1

 

0

 

0

 
                           

x22

15

 

0

 

1

 

0

 

0

 

1

 

0

 
                           

x23

12

 

0

 

0

 

1

 

0

 

0

 

1

 
                           

y4

-20000

 

-45

 

-7

 

-4

 

0

 

0

 

0

 
                           

y5

-29487

 

45

 

7

 

4

 

45

 

7

 

4

 
                           

 

Ответ: Задача не имеет допустимого  решения


 



Информация о работе Задача по "Высшей математике"