Автор работы: Пользователь скрыл имя, 31 Января 2011 в 12:40, контрольная работа
Решение 10 задач.
4.
Повторные независимые
испытания. Теорема
Бернулли
Задача 1. Игральная кость брошена 6 раз. Найти вероятность того, что ровно 3 раза выпадет «шестерка».
Решение. Шестикратное бросание кости можно рассматривать как последовательность независимых испытаний с вероятностью успеха («шестерки»), равной 1/6, и вероятностью неудачи — 5/6. Искомую вероятность вычисляем по формуле .
Задача 2. Монета бросается 6 раз. Найти вероятность того, что герб выпадет не более, чем 2 раза.
Решение. Искомая вероятность равна сумме вероятностей трех событий, состоящих в том, что герб не выпадет ни разу, либо один раз, либо два раза:
Р(А) = Р6(0) + Р6(1) + Р6(2) = .
Задача 3. Аудитор обнаруживает финансовые нарушения у проверяемой фирмы с вероятностью 0,9. Найти вероятность того, что среди 4 фирм-нарушителей будет выявлено больше половины.
Решение. Событие состоит в том, что из 4 фирм-нарушителей будет выявлено три или четыре, т.е.
.
Задача 4. Монета подбрасывается 3 раза. Найти наиболее вероятное число успехов (выпадений герба).
Решение. Возможными значениями для числа успехов в трех рассматриваемых испытаниях являются m = 0, 1, 2 или 3. Пусть Am - событие, состоящее в том, что при трех подбрасываниях монеты герб появляется m раз. По формуле Бернулли легко найти вероятности событий Am (см. таблицу):
m | 0 | 1 | 2 | 3 |
Pn(m) | 1/8 | 3/8 | 3/8 | 1/8 |
Из этой таблицы видно, что наиболее вероятными значениями являются числа 1 и 2 (их вероятности равны 3/8). Этот же результат можно получить и из теоремы 2. Действительно, n=3, p=1/2, q=1/2. Тогда
, т.е. .
Задача 5. В результате каждого визита страхового агента договор заключается с вероятностью 0,1. Найти наивероятнейшее число заключенных договоров после 25 визитов.
Решение. Имеем n=10, p=0,1, q=0,9. Неравенство для наиболее вероятного числа успехов принимает вид: 25×0,1–0,9£m*£25×0,1+0,1 или 1,6£m*£2,6. У этого неравенства только одно целое решение, а именно, m*=2.
Задача 6. Известно, что процент брака для некоторой детали равен 0,5%. Контролер проверяет 1000 деталей. Какова вероятность обнаружить ровно три бракованные детали? Какова вероятность обнаружить не меньше трех бракованных деталей?
Решение. Имеем 1000 испытаний Бернулли с вероятностью «успеха» р=0,005. Применяя пуассоновское приближение с λ=np=5, получаем
1) P1000(3)» ;
2) P1000(m³3)=1-P1000(m<3)=1-[ ]»1- ,
и Р1000(3)»0,14; Р1000(m³3)»0,875.
Задача 7. Вероятность покупки при посещении клиентом магазина составляет р=0,75. Найти вероятность того, что при 100 посещениях клиент совершит покупку ровно 80 раз.
Решение. В данном случае n=100, m=80, p=0,75, q=0,25. Находим , и определяем j(x)=0,2036, тогда искомая вероятность равна Р100(80)= .
Задача 8. Страховая компания заключила 40000 договоров. Вероятность страхового случая по каждому из них в течение года составляет 2%. Найти вероятность, что таких случаев будет не более 870.
Решение. По условию задачи n=40000, p=0,02. Находим np=800, . Для вычисления Р(m£870) воспользуемся интегральной теоремой Муавра-Лапласа:
Р(0<m£870)= Ф0(х2) –Ф0(х1), где и .
Находим по таблице значений функции Лапласа:
Р(0<m£870)=Ф0(х2)–Ф0(х1)=Ф0(2,
Задача 9. Вероятность появления события в каждом из 400 независимых испытаний равна 0,8. Найти такое положительное число e, чтобы с вероятностью 0,99 абсолютная величина отклонения относительной частоты появления события от его вероятности не превышала e.
Решение. По условию задачи p=0,8, n=400. Используем следствие из интегральной теоремы Муавра-Лапласа: . Следовательно, . По таблице для функции Лапласа определяем . Отсюда e=0,0516.
Задача 10. Курс акции за день может подняться на 1 пункт с вероятностью 50%, опуститься на 1 пункт с вероятностью 30% и остаться неизменным с вероятностью 20%. Найти вероятность того, что за 5 дней торгов курс поднимется на 2 пункта.
Решение. Возможны только следующие два варианта развития событий:
1) курс растет 2 дня, ни разу не падает, не меняется 3 дня;
2) курс растет 3 дня, падает 1 день, не меняется 1 день.
Таким образом,
5.
Дискретные случайные
величины
Задача 1. В связке из 3 ключей только один ключ подходит к двери. Ключи перебирают до тех пор, пока не отыщется подходящий ключ. Построить закон распределения для случайной величины x – числа опробованных ключей.
Решение.
Число опробованных ключей может равняться
1, 2 или 3. Если испытали только один ключ,
это означает, что этот первый ключ сразу
подошел к двери, а вероятность такого
события равна 1/3. Итак,
Далее, если опробованных ключей было
2, т.е. x=2,
это значит, что первый ключ не подошел,
а второй – подошел. Вероятность этого
события равна 2/3×1/2=1/3. То есть,
Аналогично вычисляется вероятность
В результате получается следующий
ряд распределения:
x | 1 | 2 | 3 |
P | 1/3 | 1/3 | 1/3 |
Задача 2. Построить функцию распределения Fx(x) для случайной величины x из задачи 1.
Решение. Случайная величина x имеет три значения 1, 2, 3, которые делят всю числовую ось на четыре промежутка: . Если x<1, то неравенство x£x невозможно (левее x нет значений случайной величины x) и значит, для такого x функция Fx(x)=0.
Если 1£x<2, то неравенство x£x возможно только если x=1, а вероятность такого события равна 1/3, поэтому для таких x функция распределения Fx(x)=1/3.
Если 2£x<3, неравенство x£x означает, что или x=1, или x=2, поэтому в этом случае вероятность P(x<x)=P(x=1)+P(x=2)=2/3, т.е. Fx(x)=2/3.
И, наконец, в случае x³3 неравенство x£x выполняется для всех значений случайной величины x, поэтому P(x<x)=P(x=1)+P(x=2)+P(x=3)=1, т.е. Fx(x)=1.
Итак, мы получили следующую функцию:
Задача 3. Совместный закон распределения случайных величин x и h задан c помощью таблицы
x h | 1 | 2 |
–1 | 1/16 | 3/16 |
0 | 1/16 | 3/16 |
1 | 1/8 | 3/8 |
Вычислить частные законы распределения составляющих величин x и h. Определить, зависимы ли они. Вычислить вероятность .
Решение. Частное распределение для x получается суммированием вероятностей в строках:
;
;
.
Аналогично получается частное распределение для h:
;
.
Полученные
вероятности можно записать в
ту же таблицу напротив соответствующих
значений случайных величин:
x h | 1 | 2 | px |
–1 | 1/16 | 3/16 | 1/4 |
0 | 1/16 | 3/16 | 1/4 |
1 | 1/8 | 3/8 | 1/2 |
ph | 1/4 | 3/4 | 1 |
Теперь ответим на вопрос о независимости случайных величин x и h. С этой целью для каждой клетки совместного распределения вычислим произведение (т.е. сумм по соответствующей строке и столбцу) и сравним его со значением вероятности в этой клетке. Например, в клетке для значений x=-1 и h=1 стоит вероятность 1/16, а произведение соответствующих частных вероятностей 1/4×1/4 равно 1/16, т.е. совпадает с совместной вероятностью. Это условие так же проверяется в оставшихся пяти клетках, и оно оказывается верным во всех. Следовательно, случайные величины x и h независимы.
Заметим, что если бы наше условие нарушалось хотя бы в одной клетке, то величины следовало бы признать зависимыми.
Для вычисления вероятности отметим клетки, для которых выполнено условие . Таких клеток всего три, и соответствующие вероятности в этих клетках равны 1/8, 3/16, 3/8. Их сумма равна 11/16, это и есть искомая вероятность. Вычисление этой вероятности можно записать так:
Задача
4. Пусть случайная величина
ξ имеет следующий закон распределения:
Информация о работе Теория вероятности и математическая статистика. Задачи