Автор работы: Пользователь скрыл имя, 17 Ноября 2010 в 08:13, реферат
1. Теорема Ролля
2. Теорема Лагранжа
3. Теорема Коши
4. Правило Лопиталя
АмГу
Биробиджанский
филиал
Реферат
на тему:
"Теоремы
Ролля, Коши, Лагранжа. Правило Лопиталя"
Составитель: Бронникова Т.С.
Студентки группы 070-Б 1курса
Проверил
…….В.П.
г.Биробиджан 2010г.
1. Теорема Ролля
Знание производной некоторой функции позволяет судить о характерных особенностях в поведении этой функции. В основе всех таких исследований лежат некоторые простые теоремы, называемые теоремами о среднем в дифференциальном исчислении.
Начнем рассмотрение таких теорем с теоремы, связываемой с именем французского математика Ролля (1652-1719).
Теорема 1.1. Если функция непрерывна на отрезке , дифференцируема во всех его внутренних точках, а на концах отрезка , обращается в ноль, то существует, по крайней мере, одна точка , в которой .
Доказательство. Так как функция непрерывна на отрезке , то, согласно свойству 11.1.1, она должна достигать хотя бы один раз на этом отрезке своего минимума и максимума (рис. 1.1).
Если , функция постоянна, то есть . Но в этом случае для любого .
В
общем случае
, и хотя бы одно из этих чисел не равно
нулю. Предположим для определенности,
что
. Тогда существует точка
, в которой
.
Рис. 1.1
Так как рассматриваемое значение является максимальным, то для него справедливо, что для и .
Рассмотрим
пределы
для
и
для
.
Так как оба предела равны производной функции в одной и той же точке , то они равны между собой. Значит, из одновременности и следует, что , что и требовалось доказать.
Следует отметить, что данная теорема справедлива и в том случае, когда на концах отрезка функция не обращается в ноль, но принимает равные значения . Доказательство проводится аналогично.
Геометрический смысл данной теоремы следующий: если непрерывная кривая пересекает ось в двух точках , или принимает в них равные значения, то, по крайней мере, в одной точке между и касательная к кривой параллельна оси .
Необходимо
отметить, что если не во всех точках
у рассматриваемой функции существует
производная, то теорема может не выполняться.
Это касается, например, функции
(рис. 1.2):
Рис. 1.2
Данная
функция непрерывна на отрезке
и обращается в ноль на его концах, но
ни в одной точке внутри отрезка производная
не равна нулю.
2.
Теорема Лагранжа
Результаты теоремы Ролля используются при рассмотрении следующей теоремы о среднем, принадлежащей Лагранжу (1736-1813).
Теорема. Если функция непрерывна на отрезке и дифференцируема во всех его внутренних точках, то существует, по крайней мере, одна точка , в которой .
Доказательство. Рассмотрим график функции (рис. 2.1).
Проведем
хорду, соединяющую точки
и
, и запишем ее уравнение. Воспользовавшись
уравнением прямой, проходящей через две
точки на плоскости, получим:
,
откуда:
Рис. 2.1
и
.
Составим
теперь вспомогательную функцию, вычтя
из уравнения кривой уравнение хорды:
.
Полученная функция непрерывна на отрезке и дифференцируема во всех его внутренних точках. Кроме того, вычисление в точках и показывает, что . Значит, функция на отрезке удовлетворяет требованиям теоремы Ролля. Но в этом случае существует такая точка , в которой .
Вычислим
производную функции
:
.
Согласно теореме Ролля в точке производная , то есть и
,
что и требовалось доказать.
Геометрический смысл теоремы Лагранжа следующий: внутри отрезка существует, по крайней мере, одна точка, в которой касательная параллельна хорде, стягивающей кривую на данном отрезке. В частности, при теорема переходит в теорему Ролля.
Теорему
Лагранжа часто записывают в следующем
виде:
,
то
есть приращение функции равно приращению
аргумента, умноженному на производную
функции в некоторой внутренней точке.
В связи с этим теорему Лагранжа называют
также теоремой о конечных приращениях.
3.
Теорема Коши
Рассмотрим, наконец, третью теорему о среднем, принадлежащей Коши (1789-1859), которая является обобщением теоремы Лагранжа.
Теорема. Если функции и непрерывны на отрезке и дифференцируемы во всех его внутренних точках, причем не обращается в ноль ни в одной из указанных точек, то существует, по крайней мере, одна точка , в которой .
Доказательство. Так как во всех точках , то отсюда следует, что . В противном случае, как следует из теоремы Ролля, существовала хотя бы одна точка , в которой .
Составим
вспомогательную функцию
.
Данная функция непрерывна на отрезке и дифференцируема во всех его внутренних точках. Кроме того, вычисление ее в точках и дает: . Значит, функция удовлетворяет требованиям теоремы Ролля, то есть существует хотя бы одна точка , в которой .
Вычислим
производную
:
.
Из
условия
следует, что
и
,
что и требовалось доказать.
В
случае, когда
, теорема Коши переходит в формулировку
теоремы Лагранжа.
4.
Правило Лопиталя
На основании теоремы Коши о среднем можно получить удобный метод вычисления некоторых пределов, называемый правилом Лопиталя (1661-1704).
Теорема. Пусть функции и непрерывны и дифференцируемы во всех точках полуинтервала и при совместно стремятся к нулю или бесконечности. Тогда, если отношение их производных имеет предел при , то этот же предел имеет отношение и самих функций, то есть .
Проведем доказательство данной теоремы только для случая, когда . Так как пределы у обеих функций одинаковы, то доопределим их на отрезке , положив, что при выполняется равенство .
Возьмем
точку
. Так как функции
и
удовлетворяют теореме Коши (п. 2.14), применим
ее на отрезке
:
, где
.
Так
как
, то
.
Перейдем
в данном равенстве к пределу:
.
Но если , то и , находящееся между точками и , будет стремится к , значит
.
Отсюда,
если
, то и
, то есть
,
что и требовалось доказать.
Если
при
, то снова получается неопределенность
вида
и правило Лопиталя можно применять снова,
то есть
Доказательство правила Лопиталя для случая проводится сложнее, и мы его рассматривать не будем.
При раскрытии неопределенностей типа , , , , правило Лопиталя применять непосредственно нельзя. Вначале все эти неопределенности необходимо преобразовать к виду или .
Правило
Лопиталя может быть использовано при
сравнении роста функций, в случае когда
. Наибольший практический интерес здесь
представляют функции
,
,
. Для этого найдем пределы их отношений:
1) , значит, растет быстрее, чем ;
2) , значит, растет быстрее, чем ;
3)
, значит,
растет быстрее, чем
.
Отсюда
следует, что быстрее всего растет
, затем
и, наконец,
.
Литература
Информация о работе Теоремы Ролля, Коши, Лагранжа. Правило Лопиталя