Автор работы: Пользователь скрыл имя, 12 Марта 2012 в 19:53, курсовая работа
Обычно теорию игр определяют как раздел математики для изучения конфликтных ситуаций. Это значит, что можно выработать оптимальные правила поведения каждой стороны, участвующей в решении конфликтной ситуации.
В экономике, например, оказался недостаточным аппарат математического анализа, занимающийся определением экстремумов функций. Появилась необходимость изучения так называемых оптимальных минимаксных и максиминных решений. Следовательно, теорию игр можно рассматривать как новый раздел оптимизационного подхода, позволяющего решать новые задачи при принятии решений.
ВВЕДЕНИЕ
1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ ИГР
1.1 Основные понятия и критерии теории игр
1.2 Стратегии теории игр
1.2.1 Смешанные стратегии
1.2.2 Мажорирование (доминирование) стратегий
1.3 Игры с природой
2. ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ СМЕШАННЫХ СТРАТЕГИЙ
2.1 Постановка задачи
2.2 Описание алгоритма решения
ГЛАВА 3. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ИГР С ПРИРОДОЙ
3.1 Постановка задачи
3.2 Решение задач игр с природой
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
Получаем игру без седловой точки, так как
(2.1)
(2.2)
Максиминная стратегия руководителя вычислительного центра - А2.
Для этой стратегии гарантированный выигрыш равен a = 0,4 (40%) по сравнению со старой системой.
Определим g, pl и р2 графическим способом (рис. 2.1).
Рис. 2.1. Графическая интерпретация алгоритма решения
Алгоритм решения:
1. По оси абсцисс отложим отрезок единичной длины.
2. По оси ординат отложим выигрыши при стратегии А1.
3. На вертикали в точке 1 отложим выигрыши при стратегии А2.
4. Проводим прямую b11b12, соединяющую точки а11, а21.
5. Проводим прямую b21b22, соединяющую точки а12, а22.
6. Определяем ординату точки пересечения с линий b11b12 и b21b22. Она равна g.
7. Определим абсциссу точки пересечения с. Она равна р2, а р1 = l - р2.
Выпишем решение и представим оптимальную стратегию игры:
р1 = 0,375; (2.3)
р2 = 0,625; (2.4)
g =0,55. (2.5)
Вывод. При установке новой системы ЭВМ, если неизвестны условия решения задач заказчика, на работу ЭВМ А1 должно приходиться 37,5% времени, а на работу ЭВМ А2 - 62,5%. При этом выигрыш составит 55% по сравнению с предыдущей системой ЭВМ.
3. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ИГР С ПРИРОДОЙ
3.1 Постановка задачи
Рассмотрим игры с природой на примере следующей задачи. Необходимо закупить уголь для обогрева дома. Количество хранимого угля ограничено и в течение холодного периода должно быть полностью израсходовано. Предполагается, что неизрасходованный зимой уголь в лето пропадает. Покупать уголь можно в любое время, однако летом он дешевле, чем зимой. Неопределенность состоит в том, что не известно, какой будет зима: суровой, тогда придется докупать уголь, или мягкой, тогда часть угля может остаться неиспользованной. Очевидно, что у природы нет злого умысла и она ничего против человека «не имеет». С другой стороны, долгосрочные прогнозы, составляемые метеорологическими службами, неточны и поэтому могут использоваться в практической деятельности только как ориентировочные при принятии решений.
Имеются следующие данные о количестве и ценах угля, необходимого зимой для отопления дома (табл. 3.1). Вероятности зим: мягкой - 0,35; обычной - 0,5; холодной - 0,15.
Зима |
Количество угля, т |
Средняя цена за 1 т, грн. |
Мягкая |
4 |
7 |
Обычная |
5 |
7,5 |
Холодная |
6 |
8 |
Эти цены относятся к покупкам угля зимой. Летом цена угля 6 грн. за 1 т. Есть место для хранения запаса угля до 6 т, заготавливаемого летом. Если потребуется зимой докупить недостающее количество угля, докупка будет по зимним ценам. Предполагается, что весь уголь, который сохранится до конца зимы, в лето пропадет. (Предположение делается для упрощения постановки и решения задачи.)
Сколько угля летом покупать на зиму?
3.2 Решение задач игр с природой
Пользуясь исходными данными, строим матрицу игры. Стратегиями игрока 1 (человек) являются различные показатели количества тонн угля, которые ему, возможно, следует купить. Состояниями природы выступают вероятности видов зимы.
Вычислим, например, показатель для холодной зимы. Игрок 1 приобрел уголь для обычной зимы 5 т по цене 6 грн. за 1 т. Для обогрева он должен закупить еще 1 тонну по цене 8 грн за 1т.
Следовательно, расчет платы за уголь будет 5 Ч 6 - при заготовке, и зимой 8 Ч 1. Аналогично производятся расчеты при других сочетаниях.
В итоге получим следующую платежную матрицу в игре с природой платежную матрицу (табл. 3.2).
Таблица 3.2.
Вероятность Зима |
0,35 |
0,5 |
0,15 |
Мягкая |
Обычная |
Холодная | |
Мягкая (4т) |
-(4 Ч 6) |
-(4 Ч 6 + 1 Ч 7,5) |
-(4 Ч 6 + 2 Ч 8) |
Обычная (5 т) |
-(5 Ч 6) |
-(5 Ч 6 + 0 Ч 7,5) |
-(5 Ч 6 + 1 Ч 8) |
Холодная (6 т) |
-(6 Ч 6) |
-(6 Ч 6 + 0 Ч 7,5) |
-(6 Ч 6 + 0 Ч 8) |
Произведем расчет ожидаемой средней платы за уголь (табл. 3.3).
Таблица 3.3
Зима |
Средняя ожидаемая плата |
Мягкая |
-(24 Ч 0,35 + 31,5 Ч 0,5 + 40 Ч 0,15) = -30,15 |
Обычная |
-(30 Ч 0,35 + 30 Ч 0,5 + 38 Ч 0,15) = -31,2 |
Холодная |
-(36 Ч 0,35 + 36 Ч 0,5 + 36 Ч 0,15) = - 36 |
Как видно из табл. 3.3, наименьшая ожидаемая средняя плата приходится на случай мягкой зимы (30,15 грн.). Соответственно если не учитывать степени риска, то представляется целесообразным летом закупить 4 т угля, а зимой, если потребуется, докупить уголь по более высоким зимним ценам.
Однако, привлекая дополнительную информацию в форме расчета среднеквадратичного отклонения как индекса риска. Мы можем уточнить принятое на основе максимума прибыли или минимума издержек решение. Дополнительные рекомендации могут оказаться неоднозначными, зависящими от склонности к риску ЛПР.
Формулы теории вероятности:
Дисперсия случайной величины ξ равна
Среднеквадратичное отклонение составит
где D и М - соответственно символы дисперсии и математического ожидания.
Проводя соответственно вычисления для всех случаев по такому принципу:
Мягкая зима:
М(ξ2) = - (242 Ч 0,35 + 31,52 Ч 0,5 + 402 Ч 0,15) = - 937,725
(Мξ)2 = -(30,152 ) = - 909,0225
Dξ =937,725- 909,0225 = 28,7025
sx = 5,357
Если продолжить исследование процесса принятия решения и вычислить среднеквадратичные отклонения платы за уголь для мягкой, обычной и холодной зимы, то соответственно получим:
* для мягкой зимы sx = 5,357;
* для обычной зимы sx = 2,856;
* для холодной зимы sx = 0.
Минимальный риск, естественно, будет для холодной зимы, однако при этом ожидаемая средняя плата за уголь оказывается максимальной - 36 ф. ст.
Вывод. Мы склоняемся к варианту покупки угля для обычной зимы, так как ожидаемая средняя плата за уголь по сравнению с вариантом для мягкой зимы возрастает на 3,5%, а степень риска при этом оказывается почти в 2 раза меньшей (sx = 2,856 против 5,357).
Отношение среднеквадратичного отклонения к математическому ожиданию, вариабельность (средний риск на затрачиваемый 1 ф. ст.) для обычной зимы составляет 2,856/31,2 = 0,0915 против аналогичного показателя для мягкой зимы, равного 5,357/30,15 = 0,1777, т.е. вновь различие почти в 2 раза.
Эти соотношения и позволяют рекомендовать покупку угля, ориентируясь не на мягкую, а на обычную зиму.
ЗАКЛЮЧЕНИЕ
В заключение данной работы можно сделать вывод о необходимости использования теории игр в современных экономических условиях.
В условиях альтернативы (выбора) очень часто нелегко принять решение и выбрать ту или иную стратегию. Исследование операций позволяет с помощью использования соответствующих математических методов принять обоснованное решение о целесообразности той или иной стратегии. Теория игр, имеющая в запасе арсенал методов решения матричных игр, позволяет эффективно решать указанные задачи несколькими методами и из их множества выбрать наиболее эффективные, а также упрощать исходные матрицы игр.
В данной работе были проиллюстрированы практическое применение двух основных стратегий теории игр и сделаны соответствующие выводы.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ