Автор работы: Пользователь скрыл имя, 27 Февраля 2012 в 18:52, реферат
Формулировки многих определений (теорем, аксиом) учащимся понятны, легко запоминаются после небольшого числа повторений, поэтому целесообразно в начале предложить их запомнить, а затем научить применять к решению задач.
Метод, при котором процессы запоминания определений и формирования навыков их применения протекают у учащихся неодновременно (раздельно), называют раздельным.
Например: введено в 10 классе определение параллелепипеда. По предложенным моделям наклонного, прямого и прямоугольного параллелепипедов выделить признаки, по которым эти понятия различаются. Сформулировать соответствующие определения прямого и прямоугольного параллелепипедов.
3) Многие алгебраические понятия вводятся на основании рассмотрения частных примеров.
Например: графиком линейной функции является прямая.
4) Метод целесообразных задач, (разработан С.И. Шохором-Троцким) С помощью специально подобранной задачи учащиеся приходят к выводу о необходимости введения нового понятия и целесообразности придания ему именно такого смысла, который оно уже имеет в математике.
В 5-6 классах таким методом вводятся понятия: уравнение, корень уравнения, решение неравенств, понятие действий сложения, вычитания, умножения, деления над натуральными числами, десятичными и обыкновенными дробями и т.д.
Конкретно-индуктивный метод
Сущность:
а) рассматриваются конкретные примеры;
б) выделяются существенные свойства;
в) формулируется определение;
г) выполняются упражнения: на распознавание; на конструирование;
д) работа над свойствами, не включёнными в определение;
е) применение свойств.
Например: тема – параллелограммы:
а)
1, 3, 5 – параллелограммы.
б) существенные признаки: четырёхугольник, попарная параллельность сторон.
в) распознавание, построение:
г) найти (построить) четвёртую вершину параллелограмма (* - задача №3, ст.96, Геометрия 7-11 класс: Сколько можно построить параллелограммов с вершинами в трёх заданных точках, не лежащих на одной прямой? Постройте их.).
д) другие свойства:
AC и BD пересекаются в точке О и АО=ОС, ВО=ОD; АВ=СD, AD=BC.
е) А=С, В=D.
B
AD
Закрепление: решение задач №4-23, стр.96-97, Геометрия 7-11, Погорелов.
Перспективное значение:
а) используется при изучении и определении прямоугольника и ромба;
б) принцип параллельности и равенства отрезков, заключённых между параллельными прямыми в теореме Фалеса;
в) понятие параллельного переноса (вектора);
г) свойство параллелограмма используется при выводе площади треугольника;
д) параллельность и перпендикулярность в пространстве; параллелепипед; призма.
Абстрактно-дедуктивный метод
Сущность:
а) определение понятия: - квадратное уравнение;
б) выделение существенных свойств: х – переменная; a, b, c – числа; а≠0 при
в) конкретизация понятия: - приведенное; примеры уравнений
г) упражнения: на распознавание, на конструирование;
д) изучение свойств, не включённых в определение: корни уравнения и их свойства;
е) решение задач.
В школе абстрактно-дедуктивный способ применяется тогда, когда новое понятие полностью подготовлено изучением предыдущих понятий, в том числе изучением ближайшего родового понятия, а видовое отличие нового понятия весьма простое и понятное учащимся.
Например: определение ромба после изучения параллелограмма.
Кроме того, указанный метод используется:
1) при составлении “родословной” определения понятия:
Квадрат – это прямоугольник, у которого все стороны равны.
Прямоугольник – это параллелограмм, у которого все углы прямые.
Параллелограмм – это четырёхугольник, у которого противолежащие стороны параллельны.
Четырёхугольник – фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков.
Иначе говоря, родословная представляет собой цепочку понятий, построенных через обобщения предыдущего понятия, финалом которой является неопределяемое понятие (напомним, что в курсе школьной геометрии к таковым относятся точка, фигура, плоскость, расстояние (лежать между));
2) классификация;
3) применяется к доказательствам теорем и решению задач;
4) широко используется в процессе актуализации знаний.
Рассмотрим этот процесс, представленный системой задач:
а) Дан прямоугольный треугольник со сторонами 3см и 4см. Найти длину медианы, проведённой к гипотенузе.
б) Доказать, что медиана, проведённая из вершины прямого угла треугольника, равна половине гипотенузы.
в) Доказать, что в прямоугольном треугольнике биссектриса прямого угла делит пополам угол между медианой и высотой, проведёнными к гипотенузе.
г) На продолжении наибольшей стороны АС треугольника АВС отложен отрезок СМ, равный стороне ВС. Доказать, что АВМ тупой.
В большинстве случаев в школьном преподавании применяется конкретно-индуктивный способ. В частности, таким методом вводятся понятия в пропедевтических циклах начал алгебры и геометрии в 1-6 классах, причём многие определяющие понятия вводятся описательно, без строгих формулировок.
Незнание учителем различных методов введения определений приводит к формализму, который проявляется следующим образом:
а) учащиеся затрудняются применить определения в непривычной ситуации, хотя и помнят его формулировку.
Например: 1) считают функцию - чётной, т.к. “cos” – чётная;
2) - не понимают связь между монотонностью функции и решением неравенства, т.е. не могут применять соответствующие определения, в которых основной приём исследования состоит в оценке знака разности значений функции, т.е. в решении неравенства.
б) учащиеся обладают навыками решения задач какого-либо типа, но не могут объяснить, на основании каких определений, аксиом, теорем они выполняют те или иные преобразования.
Например: 1) - преобразовать согласно этой формуле и 2) представьте, что на столе – модель четырёхугольной пирамиды. Какой многоугольник будет основанием этой пирамиды, если модель положить на стол боковой гранью? (четырёхугольник).
Процесс формирования знаний, умений и навыков не ограничивается сообщением новых знаний.
Эти знания должны быть усвоены и закреплены.
1. Формулировки многих определений (теорем, аксиом) учащимся понятны, легко запоминаются после небольшого числа повторений, поэтому целесообразно в начале предложить их запомнить, а затем научить применять к решению задач.
Метод, при котором процессы запоминания определений и формирования навыков их применения протекают у учащихся неодновременно (раздельно), называют раздельным.
Раздельный метод используется при изучении определений хорды, трапеции, чётной и нечётной функции, теорем Пифагора, признаков параллельности прямых, теоремы Виета, свойств числовых неравенств, правил умножения обыкновенных дробей, сложения дробей с одинаковыми знаменателями и т.д.
Методика:
а) учитель формулирует новое определение;
б) учащиеся класса для запоминания повторяют его 1-3 раза;
в) отрабатывается на упражнениях.
2. Компактный метод состоит в том, что учащиеся читают по частям математическое определение или предложение и по ходу чтения одновременно выполняют упражнение.
Читая формулировку несколько раз, они попутно запоминают её.
Методика:
а) подготовка математического предложения к применению. Определение разбивается на части по признакам, теорема – на условие и заключение;
б) образец действий, предлагаемый учителем, который показывает, как работать с подготовленным текстом: читаем его по частям и одновременно выполняем упражнения;
в) учащиеся по частям читают определение и одновременно выполняют упражнения, руководствуясь подготовленным текстом и образцом учителя;
Например: определение биссектрисы в пятом классе:
1) введение понятия проводится методом целесообразных задач на модели угла;
2) выписывается определение: “Луч, выходящий из вершины угла и делящий его на две равные части, называется биссектрисой угла ”;
3) выполняется задание: указать, какие из линий на чертежах являются биссектрисами углов (равные углы обозначаются одинаковым числом дуг).
На одном из чертежей учитель показывает применение определения (см. дальше);
4) работа продолжается учениками.
3. Комбинация раздельного и компактного метода: после вывода нового правила оно повторяется 2-3 раза, а затем учитель требует в процессе выполнения упражнений формулировать правило по частям.
4. Алгоритмический метод используется для формирования навыков применения математических предложений.
Методика: математические предложения заменяются алгоритмом. Читая поочередно указания алгоритма, ученик решает задачу. Таким образом у него формируется навык применения определения, аксиомы и теоремы. При этом допускается либо последующее заучивание определения, либо прочтение вместе с алгоритмом и самого определения.
Основные этапы метода:
а) подготовка к работе списка указаний, который либо дается в готовом виде, с последующим разъяснением, либо учащиеся подводятся к его самостоятельному составлению;
б) образец ответа учителя;
в) аналогичным образом работают ученики.
Раздельный и компактный методы применяются при изучении определений. Алгоритмический может быть применен только при изучении трудно усваиваемых определений (например, необходимые и достаточные условия). Наиболее широко алгоритмический метод используется при формировании навыков решения задач.
1й приём:
учитель предлагает сформулировать и применить те или иные определения, аксиомы, теоремы, которые встречаются по ходу решения задач.
Например: построить график функции; определение четной (нечетной) функции; необходимое и достаточное условие существования.
2й приём:
учитель предлагает сформулировать ряд определений, теорем, аксиом во время фронтального опроса, с тем, чтобы повторить их и заодно проверить, помнят ли их ученики. Этот приём вне решения задач не эффективен. Возможно сочетать фронтальный опрос со специальными упражнениями, которые требуют от учащихся умения применять определения, теоремы, аксиомы в различных ситуациях, умения быстро ориентироваться в условии задачи.
Знание определения не гарантирует усвоения понятия. Методическая работа с понятиями должна быть направлена на преодоление формализма, который проявляется в том, что учащиеся не могут распознать определяемый объект в различных ситуациях, где он встречается.
Распознавание объекта, соответствующего данному определению, и построение контрпримеров возможно лишь при ясном представлении о структурах рассматриваемого определения, под которой в схеме определения () понимают структуру правой части.
1. К.О. Ананченко «Общая методика преподавания математики в школе», Мн., «Унiверсiтэцкае», 1997 г.
2. Н.М. Рогановский «Методика преподавания в средней школе», Мн., «Высшая школа», 1990 г.
3. Г. Фройденталь «Математика как педагогическая задача», М., «Просвещение», 1998 г.
4. Н.Н. «Математическая лаборатория», М., «Просвещение», 1997 г.
5. Ю.М. Колягин «Методика преподавания математики в средней школе», М., «Просвещение», 1999 г.
6. А.А. Столяр «Логические проблемы преподавания математики», Мн., «Высшая школа», 2000 г.