Автор работы: Пользователь скрыл имя, 04 Марта 2011 в 10:30, реферат
ЭВМ прочно вошла в нашу жизнь, и практически нет такой области человеческой деятельности, где не применялась бы ЭВМ. ЭВМ сейчас широко используется в процессе создания и исследования новых машин, новых технологических процессов и поиске их оптимальных вариантов; при решении экономических задач, при решении задач планирования и управления производством на различных уровнях.
ЭВМ прочно вошла
в нашу жизнь, и практически нет
такой области человеческой деятельности,
где не применялась бы ЭВМ. ЭВМ
сейчас широко используется в процессе
создания и исследования новых машин,
новых технологических
Для использования ЭВМ при решении прикладных задач, прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.
Слово "Модель" происходит от латинского modus (копия, образ, очертание). Моделирование - это замещение некоторого объекта А другим объектом Б. Замещаемый объект А называется оригиналом или объектом моделирования, а замещающий Б - моделью. Другими словами, модель - это объект-заменитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.
Целью моделирования являются получение, обработка, представление и использование информации об объектах, которые взаимодействуют между собой и внешней средой; а модель здесь выступает как средство познания свойств и закономерности поведения объекта.
Моделирование широко используется в различных сферах человеческой деятельности, особенно в сферах проектирования и управления, где особенными являются процессы принятия эффективных решений на основе получаемой информации.
Модель всегда строится
с определенной целью, которая оказывает
влияние на то, какие свойства объективного
явления оказываются
Теорией моделирования
является раздел науки, изучающий способы
исследования свойств объектов-оригиналов,
на основе замещения их другими объектами-моделями.
В основе теории моделирования лежит
теория подобия. При моделировании
абсолютное подобие не имеет места
и лишь стремится к тому, чтобы
модель достаточно хорошо отображала
исследуемую сторону
Все модели можно разделить на два класса:
В свою очередь вещественные модели можно разделить на:
Идеальные модели можно разделить на:
Вещественные натурные модели - это реальные объекты, процессы и системы, над которыми выполняются эксперименты научные, технические и производственные.
Вещественные физические модели - это макеты, муляжи, воспроизводящие физические свойства оригиналов (кинематические, динамические, гидравлические, тепловые, электрические, световые модели).
Вещественные математические - это аналоговые, структурные, геометрические, графические, цифровые и кибернетические модели.
Идеальные наглядные модели - это схемы, карты, чертежи, графики, графы, аналоги, структурные и геометрические модели.
Идеальные знаковые модели - это символы, алфавит, языки программирования, упорядоченная запись, топологическая запись, сетевое представление.
Идеальные математические модели - это аналитические, функциональные, имитационные, комбинированные модели.
В приведенной классификации некоторые модели имеют двойное толкование (например - аналоговые). Все модели, кроме натурных, можно объединить в один класс мысленных моделей, т.к. они являются продуктом абстрактного мышления человека.
Остановимся на одном
из наиболее универсальных видов
моделирования - математическом, ставящим
в соответствие моделируемому физическому
процессу систему математических соотношений,
решение которой позволяет
Математическое моделирование - это средство изучения реального объекта, процесса или системы путем их замены математической моделью, более удобной для экспериментального исследования с помощью ЭВМ.
Математическая
модель является приближенным представлением
реальных объектов, процессов или систем,
выраженным в математических терминах
и сохраняющим существенные черты оригинала.
Математические модели в количественной
форме, с помощью логико-математических
конструкций, описывают основные свойства
объекта, процесса или системы, его параметры,
внутренние и внешние связи.
В общем случае математическая модель реального объекта, процесса или системы представляется в виде системы функционалов
Фi (X,Y,Z,t)=0,
где X - вектор входных переменных, X=[x1,x2,x3, ... , xN]t,
Y - вектор выходных переменных, Y=[y1,y2,y3, ... , yN]t,
Z - вектор внешних воздействий, Z=[z1,z2,z3, ... , zN]t,
t - координата времени.
Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.
Обычно их оказывается настолько много, что ввести в модель всю их совокупность не удается. При построении математической модели перед исследованием возникает задача выявить и исключить из рассмотрения факторы, несущественно влияющие на конечный результат (математическая модель обычно включает значительно меньшее число факторов, чем в реальной действительности). На основе данных эксперимента выдвигаются гипотезы о связи между величинами, выражающими конечный результат, и факторами, введенными в математическую модель. Такая связь зачастую выражается системами дифференциальных уравнений в частных производных (например, в задачах механики твердого тела, жидкости и газа, теории фильтрации, теплопроводности, теории электростатического и электродинамического полей).
Конечной целью
этого этапа является формулирование
математической задачи, решение которой
с необходимой точностью
Форма и принципы представления математической модели зависит от многих факторов.
По принципам построения математические модели разделяют на:
В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей.
Аналитическая модель разделяется на типы в зависимости от математической проблемы:
Однако по мере усложнения
объекта моделирования
В имитационном моделировании
функционирование объектов, процессов
или систем описывается набором
алгоритмов. Алгоритмы имитируют
реальные элементарные явления, составляющие
процесс или систему с
В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:
В детерминированных
моделях предполагается отсутствие
всяких случайных воздействий, элементы
модели (переменные, математические связи)
достаточно точно установленные, поведение
системы можно точно
Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.
По виду входной информации модели разделяются на:
Если информация и параметры являются непрерывными, а математические связи устойчивы, то модель - непрерывная. И наоборот, если информация и параметры - дискретны, а связи неустойчивы, то и математическая модель - дискретная.
По поведению моделей во времени они разделяются на:
Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.
По степени соответствия между математической моделью и реальным объектом, процессом или системой математические модели разделяют на:
Модель называется изоморфной, если между нею и реальным объектом, процессом или системой существует полное поэлементное соответствие. Гомоморфной - если существует соответствие лишь между наиболее значительными составными частями объекта и модели.
В дальнейшем для краткого определения вида математической модели в приведенной классификации будем пользоваться следующими обозначениями:
Первая буква:
Д - детерминированная,
С - стохастическая.
Вторая буква:
Н - непрерывная,
Д - дискретная.
Третья буква:
А - аналитическая,
И - имитационная.
Согласно этим обозначениям, описанная в лекции 2, модель кривошипно-шатунного механизма (Рис. 2.1.) обозначается как модель вида ДНА (детерминированная, непрерывная, аналитическая), так как:
Математическая модель
Определение
Математическая модель - совокупность математических объектов и отношений между ними, которая адекватно отражает свойства исследуемого объекта, интересующие исследователя.Модель может быть представлена различными способами.
Формы представления модели
Информация о работе Формы представления математических моделей