Автор работы: Пользователь скрыл имя, 19 Декабря 2010 в 23:04, курсовая работа
Задачами работы являются:
- изучение построения уравнения множественной регрессии;
- изучение множественной корреляциии
-включение факторов в уравнение множественной регрессии
- проверка качества построенной модели
- оценка мультиколлинеарности факторов
- оценка гетероскедастичности
- рассмотрение изучаемой темы на практических примерах
Введение 3
1. Множественная регрессия 6
2. Множественная корреляция 8
3. Включение факторов в уравнение множественной регрессии 10
4. Проверка качества построенной модели 13
5. Оценка мультиколлинеарности факторов 14
6. Оценка гетероскедастичности 16
Практическая часть 18
Пример 1 18
Пример 2 23
Заключение 32
Список литературы 34
В работе была рассмотрена тема множественная регрессия и корреляция в экономических исследованиях.
Решены следующие задачи
- рассмотрено построение уравнения множественной регрессии;
- изучена множественная корреляция;
- исследовано включение факторов в уравнение множественной регрессии;
- рассмотрена проверка качества построенной модели;
- исследована оценка мультиколлинеарности факторов и гетероскедастичности;
- решены практические примеры.
При
поиске меры и формы связи между
данным признаком и несколькими
признаками-факторами (
В общем случае чем выше значение коэффициента множественной корреляции, тем лучше подобрано уравнение. Обычно при интерпретации расчетов используется величина R-квадрат (R2, коэффициент детерминации).
При
предположении криволинейной
Общепринято суждение, что введение в анализ широкого круга факторов и попытка найти такое их сочетание, которое бы почти полностью определяло поведение изучаемого признака, нецелесообразно. Эффективнее произвести отбор сравнительно небольшого числа основных факторов.
При поиске достоверных результатов могут быть применены методы частной регрессии и чистой регрессии. Частный коэффициент корреляции в отличие от коэффициента (полного) парной корреляции между явлениями показывает тесноту связи после устранения изменений, обусловленных влиянием третьего явления на оба коррелируемых признака (из значений корреляционных признаков вычитаются линейные оценки в связи с третьим признаком). Точно так же понимается и определяется частная регрессия. При этом число факторов-явлений, влияние которых исследователь стремится исключить, может быть сколь угодно велико (естественно, в пределах разумного).
Множественная регрессия широко используется в решении проблем спроса, доходности акций, изучении функции издержек производства, в макроэкономических расчетах и целого ряда других вопросов эконометрики. В настоящее время множественная регрессия — один из наиболее распространенных методов в эконометрике.