Автор работы: Пользователь скрыл имя, 25 Января 2013 в 14:03, курсовая работа
Цель рационализации торговли - создание высокоэффективных товаропроводящих систем, способных обеспечить наличие нужного товара, в нужном месте, в нужное время, в нужном количестве, с минимальными затратами и по приемлемой цене. Эти системы должны иметь высокую способность адаптироваться к изменениям окружающей среды.
Введение 4
Раздел 1.Механизм функционирования закупочной логистики и логистики складирования 5
1.1. Сущность и задачи закупочной логистики 5
1.2.Организация складирования товаров 7
1.3. Место складов в логистических каналах 8
1.4. Выбор местонахождения и определение потребности в складах 10
1.5. Альтернативы складирования 11
1.6. Запасы в логистике 17
1.7.Система регулирования запасов 38
Раздел 2.Анализ коммерческой деятельности предприятия 39
2.1.Описание предприятия 39
2.2. Характеристика ассортимента 40
2.2.1.Ассортимент мужской и женской одежды 42
2.2.2.Ассортимент мужской и женской обуви 42
2.3.Организационная структура предприятия 44
2.4.Анализ рынка потребителей 45
2.5.Характеристика конкурентов 47
2.6.Политика предприятия 50
Раздел 3.Управление товарными запасами 53
3.1. Определение страхового запаса товаров в отделе "Ультра" 53
3.2. Определение страхового запаса товаров в отделе "Ультра" 69
3.3. Принципиальные системы регулирования товарных запасов 73
Заключение 76
Список литературы 78
Приложение 1 79
Приложение 2 81
n = 100 - z ,
где n - уровень обслуживания в % ;
z - риск полного исчерпания запаса на складе в %.
Например, при уровне
обслуживания потребителей в 95% риск
Вместе с тем, фиксируя уровень обеспеченности запаса и заявляя, что 95% всех продаж будут осуществлены прямо из имеющегося запаса, логистики могут лишь с уверенностью судить о соответствии затрат на содержание и оформление заказа таким уровням запасов, которые создадут условия для минимальных общих затрат. В то время, как ожидаемые издержки в связи с дефицитом установить довольно сложно, хотя эта составляющая расходов активно влияет на величину запасов. Это требует осторожного отношения к подобного рода оценкам уровня обслуживания, так как увеличение данного показателя всего на несколько процентов может привести к резкому росту потребности в инвестициях для увеличения запасов. Поэтому от логистики необходимо ожидать взвешенной реакции на попытки маркетинговых служб фирмы повысить уровень обслуживания клиентов, даже если речь идет об обоснованности оценки этого показателя или конкурентоспособности товаров. Столь интенсивный рост среднего уровня запасов приводит к тому, что многие предприятия организуют системы обслуживания, рассчитанные на обеспечение уровня готовности к поставке, существенно более низкого, чем 100 процентов.
Первым правилом в деле управления уровнем запасов является определение потребности в хранимых ценностях. Поэтому необходимо представлять, какими будут объемы будущих продаж продукции фирмы и продолжительность времени поставки для пополнения запасов, что в свою очередь, повлияет и на величину производственной потребности.
При определении потребности
принципиально различаются след
-расчет начинается только тогда, когда потребность возникает, например, при поступлении заказов потребителей;
-расчет на основе данных о расходе запасов.
Второй подход используется в тех случаях, когда требуемое клиентом время поставки меньше, чем цикл восстановления складских запасов.
Наряду с этими двумя подходами существуют три метода определения потребности:
- детерминированный;
- стохастический;
- эвристический.
В первом случае известен определенный период выполнения заказа и, соответственно, потребность в материалах по количеству и срокам.
Во втором случае основой для расчета являются математико-статистические методы, дающие ожидаемую потребность.
В третьем случае потребность определяется на основе опыта работников.
Детерминированный метод может быть применен для расчета потребности в материалах и комплектующих для удовлетворения нужд производства, когда уже установлены объемы продажи изделий. При этом важно установить время потребления материалов по ступеням:
-материалы должны иметься в наличии в наиболее ранний срок с тем, чтобы цикл их поступления и первичной обработки не увеличивал цикл изготовления изделия;
-детали должны своевременно быть готовы, чтобы оставалось необходимое время для сборки;
-покупные изделия должны быть заказаны с учетом ожидаемого времени поставки.
При определении потребности
Методы установления ожидаемой потребности, позволяющие прогнозировать важнейшие для деятельности показатели, такие как вероятный объем реализации продукции и необходимые для его изготовления материальные ресурсы, в настоящее время нашли широкое распространение.
Прогнозы, разработанные на основе стохастических моделей, имеют следующие особенности:
-вся предсказываемая на будущее ситуация исходит из времени прогноза;
-обстоятельства будущего периода не определены. Оценка возможности развития явления, а также сбор необходимой информации осуществляются до разработки прогноза;
-процесс прогнозирования поддерживается информацией о прошедшем периоде.
Классификация критериев, учитывающих наиболее важные особенности методов прогнозирования, показана на рисунке 1.4. Характерным для всех методов прогноза является попытка определения развития будущего на основе показателей прошедшего периода. Это ведет к неизбежным ошибкам при изменении потребности. Несмотря на это, прогнозы неизбежны, так как другие методы оценки будущей ситуации неизвестно. Причем прогнозные оценки должны быть дополнены знаниями и опытом, вытекающим из наблюдений за рынком.
Основой прогнозных методов является подробное выявление всех показателей продажи продукции и использование материалов за прошлый период и их изменения во времени. Обычной формой представления является так называемый временной ряд, анализ которого позволяет сделать заключение об использовании рассматриваемых товаров с учетом таких факторов, как тенденции, сезонные изменения, нестабильность или случайные отклонения. Анализ временного ряда позволяет определить подходящую модель из числа охарактеризованных на рисунке 1.5. Возможными моделями реализации товаров являются:
- модель постоянного потребления;
- прямопропорциональная модель;
- сезоннопостоянная модель;
- сезонная модель с последовательным ростом (рис. 1.6, 1.7).
Рис.1.7. Алгоритм расчетов при стохастическом определении потребности.
Метод экспоненциального сглаживания является важнейшим методом стохастических прогнозов. В этом случае весомость цифр в отдельные периоды характеризуется с помощью так называемого фактора “a“, значение которого находится в пределах от 0 до 1. Чем больше значение “a“, тем весомее влияние ближайших прошедших периодов и метод более подходит для оценки фактического потребления. Недостатком является растущая чувствительность к случайным колебаниям. На практике колебания “a“ находятся в пределах 0,1 ¸ 0,3. Значение 0,5 почти никогда не превышается.
Экспоненциальное сглаживание применимо, прежде всего, при постоянном объеме потребления (a = 0,1 ¸ 0,3). При более высоких значениях (0,3 ¸ 0,5) метод подходит при изменении структуры потребления, например, с учетом сезонных влияний. Он соответствует выравниванию средних значений с постоянно снижающимися, в соответствии с геометрическим рядом, факторами весомости. Большими преимуществами этого метода являются значительно меньшая потребность в страховых запасах.
При постоянно увеличивающемся объеме потребления целесообразно использовать метод экспоненциального сглаживания 2. С помощью него оказывается возможным определить тенденцию роста потребности, которая базируется на прогнозах, пригодных для многих последующих периодов времени.
Метод регрессионного анализа. Основанием этого метода является приближение известных тенденций потребления с помощью математических функций, которые могут быть экстраполированы на будущий период. В соответствии с характером кривой регрессии различаются линейный и нелинейный регрессионый анализ. Метод линейной регрессии целесообразно применять при условно пропорциональном росте потребления. Тогда изменение потребления отражается аппроксимирующей прямой, которая имеет вид:
y = a + b*t .
Коэффициенты “а” и “b” определяются с помощью данных о потреблении, чтобы сумма всех отклонений от аппроксимирующей прямой была минимальной. Поскольку могут иметь место как положительные, так и отрицательные значения отклонений, то это может в худшем случае привести к компенсации оценок. Чтобы этого избежать, следует применять метод наименьших квадратов.
Качество прогноза зависит в конечном итоге от рассеивания исходных данных.
Если кривая потребности не аппроксимируется с помощью прямой, то применяется нелинейный регрессионный анализ. В этом случае кривая потребности аппроксимируется с помощью полинома
y = a + b*t +c*t2+d*t3 + ... +z*tn .
В связи с большой трудоемкостью регрессионного анализа его применение целесообразно с помощью ЭВМ, причем программа для расчета коэффициентов a,b,c,d,...,z регрессионной кривой находится с помощью минимизации среднеквадратичного отклонения.
Важным для применения методов прогноза потребности является регулярное, например, ежеквартальное, в крайнем случае, ежегодное наблюдение и контроль для проверки того, что используемые предпосылки остаются действенными. Все указанные здесь методы оценки потребности формализованы, легко программируются, что обеспечивает применение ЭВМ. Выявление ошибок прогноза и контроль имеют особое значение при увеличении срока службы или давности выпуска изделия. При изменении потребности требуется применение краткосрочных прогнозов.
Наиболее частые отклонения определяются среднеквадратичными отклонениями и корнем квадратным из среднеквадратичных. При этом в основу кладется предположение, что встречающиеся ошибки подчиняются нормальному (Гауссову) распределению.
При помощи детерминированных и стохастических методов делается первый шаг для определения брутто-потребности в готовых изделиях, материалах и комплектующих. Имеющееся на складе их наличие состоит из запасов различных видов и должно быть учтено при определении величины заказа. Брутто-потребность + дополнительная потребность = общая брутто-потребность - располагаемое наличие = нетто-потребность.
Так как задачей управления запасами является получение по возможности более точных сведений о величине различных видов запасов (на складе и в разных стадиях обработки), необходимо учитывать:
-увеличение количества продукции для нужд службы маркетинга;
-дополнительную потребность
для специальных целей (
-резервирование на случай возможного снижения величины поставки материалов;
-повышенную потребность для ремонта и содержания оборудования.
Регулирование запасов
в рамках концепции
- величину заказа;
- точку заказа;
- размер страхового запаса.
Оптимальная величина заказа соответствует наименьшим издержкам на обслуживание запасов и учитывает затраты на хранение и оформление заказа. Чтобы рассчитать искомую величину, сделаем следующие допущения:
-хранится один вид материалов;
-годовой спрос на
ресурсы установлен и он
-время выполнения заказа неизменно;
-за одну поставку обслуживается один заказ;
-скидки на увеличенный объем заказа (если они есть) не учитываются;
- цена за единицу не зависит от приобретаемого объема.
В данной модели можно представить запас как текущий, величина которого колеблется от максимальной в момент поставки ресурсов до минимальной, равного нулю, в момент времени перед выполнением заказа. Если считать потребление равномерным, то изменение текущего запаса можно представить прямой линией (рис. 1.8).
Затраты на хранение в этом случае составят:
H = Q / 2 * h ,
где H - годовые издержки на поддержание складского запаса;
Q/2 - средняя величина запаса;
h - издержки на хранение одной единицы запаса в год.
Единичные издержки хранения могут исчисляться в долях от стоимости запасов (С):
h = i * C ,
где i - доля затрат на поддержание запасов или средняя ставка банковского процента (упущенная выгода).
Таким образом, затраты на хранение прямо пропорциональны объему заказа.
Издержки, связанные с оформлением заказа (рис. 1.9), определяются как:
S = D / Q * a ,
где S - годовые затраты на оформление заказов;
D - годовая потребность;
a - затраты на оформление одного заказа.
Рис.1.9. Затраты на оформление заказа.
Чтобы рассчитать оптимальный размер необходимо найти значение производной dE/dQ и приравнять его к нулю.
dE/dQ = h / 2 - D * a / Q2 .
Из уравнения
h / 2 - D * a / Q2 = 0 .
Получим значение Q0 оптимального размера заказа
.
Оценивая влияние транспортных издержек на оптимальный размер заказа, необходимо учесть, что последний может измениться в сторону увеличения. В этом случая полные затраты должны определяться из соотношения