Системы счисления

Автор работы: Пользователь скрыл имя, 26 Ноября 2011 в 11:34, практическая работа

Краткое описание

Системы счисления — одна из традиционных тем курса информатики, восходящих к программированию ЭВМ первых поколений в машинных кодах. В настоящее время данная тема сохраняет свое значение как весьма типичный случай кодирования информации, а также в связи с широким использованием шестнадцатеричных обозначений в машинно-ориентированных разделах программирования. Знание систем счисления полезно для понимания представления данных в памяти ЭВМ и операций над ними.

Содержимое работы - 1 файл

системы счисления.doc

— 291.50 Кб (Скачать файл)

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Системы счисления

      Системы счисления — одна из традиционных тем курса информатики, восходящих к программированию ЭВМ первых поколений  в машинных кодах. В настоящее  время данная тема сохраняет свое значение как весьма типичный случай кодирования информации, а также в связи с широким использованием шестнадцатеричных обозначений в машинно-ориентированных разделах программирования. Знание систем счисления полезно для понимания представления данных в памяти ЭВМ и операций над ними. Системы счисления (особенно по основанию 10) достаточно подробно изучаются в курсах математики и информатики средней общеобразовательной школы. В данном курсе эта тема предполагает повторение уже известных сведений, специализацию в отношении систем счисления по основанию 16, 8 и 2, а также обобщение в плане кодирования информации.

    Целесообразно проведение семинарского занятия, подготовка рефератов, посвященных истории  и значению позиционных систем счисления. Особое внимание следует уделить  формированию стабильных навыков чтения и записи чисел в шестнадцатеричной системе. Полезным является и знакомство с различными приемами перевода чисел в системы счисления по основанию 2, 8 и 16, в том числе с помощью калькулятора или компьютера и встроенного интерпретатора языка BASIC.  

Перевод чисел из одной позиционной системы счисления в другую. Арифметические операции

    При переводе чисел из десятичной системы  счисления в систему с основанием > 1 обычно используют следующий алгоритм:

    1) если переводится целая часть  числа, то она делится на  P, после чего запоминается остаток от деления. Полученное частное вновь делится на P, остаток запоминается. Процедура продолжается до тех пор, пока частное не станет равным нулю. Остатки от деления на P выписываются в порядке, обратном их получению;

    2) если переводится дробная часть числа, то она умножается на P, после чего целая часть запоминается и отбрасывается. Вновь полученная дробная часть умножается на P и т.д. Процедура продолжается до тех пор, пока дробная часть не станет равной нулю. Целые части выписываются после двоичной запятой в порядке их получения. Результатом может быть либо конечная, либо периодическая двоичная дробь. Поэтому, когда дробь является периодической, приходится обрывать умножение на каком-либо шаге и довольствоваться приближенной записью исходного числа в системе с основанием P 

    Пример 1. Перевести данное число из десятичной системы счисления в двоичную (получить пять знаков после запятой в двоичном представлении).

а) 464(10); б) 380,1875(10)в) 115,94(10)

Решение

а) 464 0   б) 380 0   1875   в) 115 1   94
232 0   190 0 0 375   57 1 1 88
116 0   95 1 0 75   28 0 1 76
58 0   47 1 1 5   14 0 1 52
29 1   23 1 1 0   7 1 1 04
14 0   11 1       3 1 0 08
7 1   5 1       1 1 0 16
3 1   2 0              
1 1   1 1              

а)  464(10)=111010000(2); б) 380,1875(10) = 101111100,0011(2); в)  115,94(10) » 1110011,11110(2)

(в данном  случае было получено шесть  знаков после запятой, после  чего результат был округлен.)

    Если  необходимо перевести число из двоичной системы счисления в систему счисления, основанием которой является степень двойки, достаточно объединить цифры двоичного числа в группы по столько цифр, каков показатель степени, и использовать приведенный ниже алгоритм. Например, если перевод осуществляется в восьмеричную систему, то группы будут содержать три цифры (8 = 23). В целой части числа группировка производится справа налево, в дробной части — слева направо. Если в последней группе недостает цифр, дописываются нули: в целой части — слева, в дробной — справа. Затем каждая группа заменяется соответствующей цифрой новой системы. Соответствия приведены в таблице.

P Соответствия
2 00 01 10 11  
4 0 1 2 3  
2 000 001 010 011 100 101 110 111  
8 0 1 2 3 4 5 6 7                
2 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
16 0 1 2 3 4 5 6 7 8 9 A B C D E F

    Переведем из двоичной системы в шестнадцатеричную  число 1111010101,11(2).

      0011 1101 0101,1100(2) = 3D5,C(16).

    При переводе чисел из системы счисления  с основанием P в десятичную систему счисления необходимо пронумеровать разряды целой части справа налево, начиная с нулевого, и дробной части, начиная с разряда сразу после запятой, слева направо (начальный номер –1). Затем вычислить сумму произведений соответствующих значений разрядов на основание системы счисления в степени, равной номеру разряда. Это и есть представление исходного числа в десятичной системе счисления.  

    Пример 2. Перевести данное число в десятичную систему счисления:

а) 1000001(2).

    1000001(2) = 1 × 2+ 0 × 2+ 0 × 2+ 0 × 2+ 0 × 2+ 0 × 2+ 1 × 2= 64 + 1 = 65(10).

    Замечание. Если в каком-либо разряде стоит нуль, то соответствующее слагаемое можно опускать.

б) 1000011111,0101(2).

    1000011111,0101(2) = 1 × 2× 2+ 1 × 2+ 1 × 2+ 1 × 2+ 1 × 2+ 1 × 2–2 + 1 × 2–4 =

    = 512 + 16 + 8 + 4 + 2 + 1 + 0,25 + 0,0625 = 543,3125(10).

в) 1216,04(8).

    1216,04(8) = 1 × 8+ 2 × 8+ 1 × 8+ 6 × 8+ 4 × 8= 512 + 128 + 8 + 6 + 0,0625 = 654,0625(10).

г) 29A,5(16).

    29A,5(16) = 2 × 16+ 9 × 16+ 10 × 16+ 5 × 16–1 512 + 144 + 10 + 0,3125 = 656,3125(10).

    Для выполнения арифметических операций в  системе счисления с основанием P необходимо иметь соответствующие таблицы сложения и умножения.

+ 0 1   ´ 0 1
0 0 1   0 0 0
1 1 10   1 0 1
 

 

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 10
2 2 3 4 5 6 7 10 11
3 3 4 5 6 7 10 11 12
4 4 5 6 7 10 11 12 13
5 5 6 7 10 11 12 13 14
6 6 7 10 11 12 13 14 15
7 7 10 11 12 13 14 15 16

Информация о работе Системы счисления