Автор работы: Пользователь скрыл имя, 28 Декабря 2011 в 22:48, курсовая работа
В первой половине ХХ века при регистрации и обработке информации использовались, в основном, измерительные приборы и устройства аналогового типа, работающие в реальном масштабе времени, при этом даже для величин, дискретных в силу своей природы, применялось преобразование дискретных сигналов в аналоговую форму. Положение изменилось с распространением микропроцессорной техники и ЭВМ.
Министерство образования и науки РФ
Сибирская
государственная автомобильно-
Кафедра
«Информационные технологии»
Курсовая
работа по информатике
Название: РАЗРАБОТКА ОБУЧАЮЩЕГО МОДУЛЯ
ПО ИНФОРМАТИКЕ
Раздел 2 ПОНЯТИЕ ИНФОРМАЦИИ; ОБЩАЯ ХАРАКТЕРИСТИКА ПРОЦЕССОВ СБОРА,ПЕРЕДАЧИ, ОБРАБОТКИ И НАКОПЛЕНИЯ ИНФОРМАЦИИ.
Тема
2.1Сигналы;дискретизация,
Выполнила:А.
Руководитель:
Защетила:____
о
Омск-2011
В первой половине
ХХ века при регистрации и обработке
информации использовались, в основном,
измерительные приборы и
Сигнал (в теории информации и связи) — материальный носитель информации, используемый для передачи сообщений в системе связи. Сигнал может генерироваться, но его приём не обязателен, в отличие от сообщения, которое должно быть принято принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением.
Параметры сигналов
Сигналы подразделяются на Аналоговые и цифровые.
Аналоговый сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений. Различают два пространства сигналов - пространство L (непрерывные сигналы), и пространство l (L малое) - пространство последовательностей. Пространство l (L малое) есть пространство коэффициентов Фурье (счетного набора чисел, определяющих непрерывную функцию на конечном интервале области определения), пространство L - есть пространство непрерывных по области определения (аналоговых) сигналов. При некоторых условиях, пространство L однозначно отображается в пространство l (например, первые две теоремы дискретизации Котельникова). Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют непрерывным сигналом. Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые). Примеры непрерывных пространств и соответствующих физических величин:
Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов. Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте "количество информации" будет ограничено лишь динамическим диапазоном средства измерения. Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).
Применение:
Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый с термопары, несет информацию об изменении температуры, сигнал с микрофона - о быстрых изменениях давления в звуковой волне, и т.п.
2.2 Цифровой сигнал
Цифровой сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений. Сигналы представляют собой дискретные электрические или световые импульсы. При таком способе вся емкость коммуникационного канала используется для передачи одного сигнала. Цифровой сигнал использует всю полосу пропускания кабеля. Полоса пропускания - это разница между максимальной и минимальной частотой, которая может быть передана по кабелю. Каждое устройство в таких сетях посылает данные в обоих направлениях, а некоторые могут одновременно принимать и передавать. Узкополосные системы (baseband) передают данные в виде цифрового сигнала одной частоты. Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал, поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации. Замечание. Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым. Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе/частоте (джиттер), поляризации. Но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).
3.1 Непрерывный (аналоговый) способ представления информации
Непрерывный (аналоговый)
способ представления информации -
представление информации, в котором
сигнал на выходе датчика будет меняться
вслед за изменениями соответствующей
физической величины. Примеры
непрерывной информации: Примером непрерывного
сообщения служит человеческая речь, передаваемая
модулированной звуковой волной; параметром
сигнала в этом случае является давление,
создаваемое этой волной в точке нахождения
приемника - человеческого уха. Аналоговый
способ представления
информации имеет недостатки:Точность
представления информации определяется
точностью измерительного прибора (например,
точность числа отображающего напряжение
в электрической цепи, зависит от точности
вольтметра). Наличие помех может сильно
исказить представляемую информацию.
3.2 Цифровой способ представления информации
Цифровой способ представления информации - представление информации в дискретном виде.
Примеры дискретной информации:Дискретными являются показания цифровых измерительных приборов, например, вольтметра (сравните со "старыми", стрелочными приборами). Очевидным (в самом изначальном смысле этого слова!) образом дискретной является распечатка матричного принтера, а линия, проводимая графопостроителем, напротив, является непрерывной. Дискретным является растровый способ представления изображений, тогда как векторная графика по своей сути непрерывна. Дискретна таблица значений функции, но когда мы наносим точки из нее на миллиметровую бумагу и соединяем плавной линией, получается непрерывный график. Механический переключатель диапазонов в приемниках был сконструирован так, чтобы он принимал только фиксированные положения. Тем не менее, все не так просто. То, что фотографии в старых газетах дискретны, видят и соглашаются все. А в современном красочном глянцевом журнале? А распечатка картинки на лазерном принтере - она дискретна или непрерывна (все-таки, она состоит из частичек специального порошка, а они маленькие, но конечные по размеру; да и сама характеристика dpi - количество точек на единицу площади наводит на сомнения в непрерывности картинки, хотя глаз упорно не видит дискретности)? Если еще в этот момент вспомнить, что твердые тела состоят из мельчайших атомов, а глаз, воспринимающий изображение, имеет чувствительные маленькие палочки и колбочки, то все вообще станет туманным и неоднозначным… Видимо, чтобы не запутаться совсем, надо принять правило, что в тех случаях, когда рассматривая величина имеет настолько большое количество значений, что мы не в состоянии их различить, то практически ее можно считать непрерывной. Напрерывное сообщение может быть представлено непрерывной функцией, заданной на некотором отрезке [a,b]. Непрерывное сообщение можно преобразовать в дискретное, такая процедура называется дискретизацией (оцифровывание). Для этого из бесконечного множества значений этой функции (параметра сигнала) выбирается их определенное число, которое приближенно может характеризовать остальные значения. 1. Дискретизация и квантование
Дискретизация - преобразование непрерывной функции в дискретную. Используется в гибридных вычислительных системах и цифровых устройствах при импульсно-кодовой модуляции сигналов в системах передачи данных. При передаче изображения используют для преобразования непрерывного аналогового сигнала в дискретный или дискретно-непрерывный сигнал. Обратный процесс называется восстановлением. При дискретизации только по времени, непрерывный аналоговый сигнал заменяется последовательностью отсчётов, величина которых может быть равна значению сигнала в данный момент времени. Возможность точного воспроизведения такого представления зависит от интервала времени между отсчётами *t. Согласно теореме Котельникова:
где - наибольшая частота спектра сигнала.
3.3 Этапы дискретизации
Область определения функции разбивается точками x1, x2,., xn на отрезки равной длины и на каждом из этих отрезков значение функции принимается постоянным и равным, например, среднему значению на этом отрезке; полученная на этом этапе функция называется ступенчатой. Следующий шаг - проецирование значений "ступенек" на ось значений функции (ось ординат). Полученная таким образом последовательность значений функции y1, y2,., yn является дискретным представлением непрерывной функции, точность которого можно неограниченно улучшать путем уменьшения длин отрезков разбиения области значений аргумента.
Рисунок 4 - Дискретизация
Ось значений функции
можно разбить на отрезки с заданным
шагом и отобразить каждый из выделенных
отрезков из области определения функции
в соответствующий отрезок из множества
значений. В итоге получим конечное множество
чисел, определяемых, например, по середине
или одной из границ таких отрезков. Таким
образом, любое сообщение может быть представлено
как дискретное, иначе говоря, последовательностью
знаков некоторого алфавита.
Информация о работе Сигналы дискретизация квантование и кадирование сигналов